Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Composites Thermosetting resin matrix

The fabrication of composite laminates having a thermosetting resin matrix is a complex process. It involves simultaneous heal, mass, and momentum transfer along with chemical reaction in a multiphase system with time-dependent material properties and boundary conditions. Two critical problems, which arise during production of thick structural laminates, are the occurrence of severely detrimental voids and gradients in resin concentration. In order to efficiently manufacture quality parts, on-line control and process optimization are necessary, which in turn require a realistic model of the entire process. In this article we review current progress toward developing accurate void and resin flow portions of this overall process model. [Pg.101]

FRP composites comprise two major constituents the thermosetting resin matrix and the fibre reinforcement. Unlike blends, in composites the constituents (fibres and matrix) grossly retain their identities and simultaneously produce properties that can never be achieved with either of the constituents acting alone. The fibres are usually of high strength and rigidity and predominantly responsible for the load-bearing capacity of composites. The role of matrix resin is to keep the fibres in a desired location and orientation. The fibres must be separated from each other to avoid mutual... [Pg.283]

Many matrix choices are available, and each type has an impact on the processing techniques, physical and mechanical properties, and enviromnental resistance of the finished part. Thermoplastic and thermoset materials can be resin matrices. Thermoplastic matrices have been developed to increase hot/wet use temperature and the fracture toughness of composites. Thermosetting resins, however, are more common. The common thermoset matrices for composites include polyester and vinyl esters, epoxy, bismaleimide, polyimide, and cyanate ester and phenolic triazine resins. [Pg.337]

Currendy, epoxy resins (qv) constitute over 90% of the matrix resin material used in advanced composites. The total usage of advanced composites is expected to grow to around 45,500 t by the year 2000, with the total resin usage around 18,000 t in 2000. Epoxy resins are expected to stiH constitute about 80% of the total matrix-resin-systems market in 2000. The largest share of the remaining market will be divided between bismaleimides and polyimide systems (12 to 15%) and what are classified as other polymers, including thermoplastics and thermoset resins other than epoxies, bismaleimides, cyanate esters, and polyimide systems (see Composites,polymer-matrix-thermoplastics). [Pg.19]

StructurPly I and II by Multi-Axial are thermoplastic matrix resin prepregs used in the construction of primary-load-carrying composite structures. Unlike the few hours typically required by the thermoset resin materials to cure, StructurPly needs a few minutes at 196°C. [Pg.842]

Most structural PMCs consist of a relatively soft matrix, such as a thermosetting plastic of polyester, phenolic, or epoxy, sometimes referred to as resin-matrix composites. Some typical polymers used as matrices in PMCs are listed in Table 1.28. The list of metals used in MMCs is much shorter. Aluminum, magnesium, titanium, and iron- and nickel-based alloys are the most common (see Table 1.29). These metals are typically utilized due to their combination of low density and good mechanical properties. Matrix materials for CMCs generally fall into fonr categories glass ceramics like lithium aluminosilicate oxide ceramics like aluminnm oxide (alnmina) and mullite nitride ceramics such as silicon nitride and carbide ceramics such as silicon carbide. [Pg.103]

Fiber-Matrix Composites. As shown in Figure 1.75, there are two main classifications of FMCs those with continuous fiber reinforcement and those with discontinuous fiber reinforcement. Continuous-flber-reinforced composites are made from fiber rovings (bundles of twisted filaments) that have been woven into two-dimensional sheets resembling a cloth fabric. These sheets can be cut and formed to a desired shape, or preform, that is then incorporated into a composite matrix, typically a thermosetting resin such as epoxy. Metallic, ceramic, and polymeric fibers of specific compositions can all be produced in continuous fashions, and the properties of the... [Pg.105]

The use of advanced composites has increased significantly in the last decade. The properties of high-specific strength and stiffness make composites ideal for many aerospace, automotive, and infrastructure applications. Fiber-reinforced composites, which commonly use thermosetting resins such as epoxies as the matrix material, have some inherent deficiencies. These include the need for multistep processing, limited shelf-life, low toughness, sensitivity to moisture, and the inability to reprocess or reform the material [1]. [Pg.209]

The function of the resin matrix material in filament-wound structures is to help distribute the load, maintain proper fiber position, control composite mechanical and chemical properties, and provide interlaminar shear strength. Either a thermosetting or a thermoplastic resin material may be selected. Thermosetting resins may be selected for application in a wetwinding process or as part of a prepreg resin system. [Pg.394]

Two matrix flow submodels have been proposed the sequential compaction model [15] and the squeezed sponge model [11], Both flow models are based on Darcy s Law, which describes flow through porous media. Each composite layer is idealized as a fiber sheet surrounded by thermoset resin (Fig. 13.9). By treating the fiber sheet as a porous medium, the matrix velocity iir relative to the fiber sheet is given as (Eq. 13.5) ... [Pg.402]

Matrix materials for commercial composites are mainly liquid thermosetting resins such as polyesters, vinyl esters, epoxy resins, and bismaleimide resins. Thermoplastic composites are made from polyamides, polyether ether ketone (PEEK), polyphenylene sulfide (PPS), polysulfone, polyetherim-ide (PEI), and polyamide-imide (PAI). [Pg.207]

Films of the polyisoimides were cast from DMAC at 55 °C under reduced pressure (0.1 mm). A study of the isomerization reaction was conducted by FTIR and showed that the isomerization began at approximately 100 °C and was complete after 3 h at 250 °C. In all cases the thermally treated films were insoluble in all solvents tested. Composite films were produced with XVII and three commercial matrix systems a polyarylsulfone (Radel), a polysulfone (Udel), and an acetylene terminated isoimide thermosetting resin (IP-600). Films of the matrix and XVII were cast from DMAC. Slightly cloudy films, indicating some phase separation, resulted with both the Radel and Udel systems. Composite films cast with IP-600, however, were completely clear and showed no signs of phase separation. The structural similarity of the IP-600 resin and XVII may account for the greater homogeneity of the system. Property assessment of these films before and after thermal treatment is currently underway. [Pg.286]

The composite industry was launched in the early 1960s with the development of fiberglass, which consists of short glass fibers in a matrix of some thermoset resin. Fiberglass composites are tough, lightweight, and inexpensive to... [Pg.630]

Adipic acid [124-04-9] - [ALKYD RESINS] (Vol 2) - [DICARBOXYLIC ACIDS] (Vol 8) - [FOOD ADDITIVES] (Vol 11) - (ELECTROCHEMICALPROCESSDTG - ORGANIC] (Vol 9) -barrier polymers from [BARRIERPOLYMERS] (Vol 3) -from cyclohexane [HYDROCARBONS - C1-C6] (Vol 13) -from cyclohexane [HYDROCARBON OXIDATION] (Vol 13) -from cyclohexanol [CYCLOHEXANOL AND CYCLOHEXANONE] (Vol 7) -as food additive [FOOD ADDITIVES] (Vol 11) -nylon from [POLYAMIDES - FIBERS] (Vol 19) -nylon-6,6 from [POLYAMIDES - GENERAL] (Vol 19) -nylon-6,6 from [POLYAMIDES - PLASTICS] (Vol 19) -m polyester production [COMPOSITE MATERIALS - POLYMER-MATRIX - THERMOSETS] (Vol 7) -m polyester resins [POLYESTERS, UNSATURATED] (Vol 19) -soda preservatives [CARBONATED BEVERAGES] (Vol 5)... [Pg.17]


See other pages where Composites Thermosetting resin matrix is mentioned: [Pg.577]    [Pg.76]    [Pg.66]    [Pg.716]    [Pg.226]    [Pg.48]    [Pg.242]    [Pg.401]    [Pg.745]    [Pg.809]    [Pg.825]    [Pg.896]    [Pg.922]    [Pg.71]    [Pg.309]    [Pg.7]    [Pg.9]    [Pg.35]    [Pg.39]    [Pg.475]    [Pg.814]    [Pg.168]    [Pg.538]    [Pg.496]    [Pg.320]    [Pg.8]    [Pg.199]    [Pg.71]    [Pg.127]    [Pg.208]    [Pg.209]    [Pg.403]    [Pg.19]    [Pg.48]    [Pg.55]    [Pg.115]   
See also in sourсe #XX -- [ Pg.283 ]




SEARCH



Composite matrices

Composite matrix resins

Composite resin

Composites Thermoset resin

Composites thermosets

Composites thermosetting

Compositions thermoset

Matrix composition

Matrix resin thermosetting resins

Matrix thermoset

Resin matrix

Resin thermoset

Thermoset composites

Thermosets matrix

Thermosetting composition

Thermosetting resins

© 2024 chempedia.info