Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Component scanned

The CamuS system consists of a number of components, both hardware and software, as shown in Figure 1. The hub of the system is the data acquisition unit, which collects and stores ultrasonic data in the form of RF waveforms. An accurate probe position monitor provides information on the location and orientation of the probe as it is scanned over the test object. Software tools have been developed to provide assistance to the user with preparing inspection procedures according to the requirements of prEN1714 with visualising the data, in relation to the test object with making measurements of any indications present and with classifying indications. [Pg.765]

The use of complex scaimers and scatmers "tailormade" for scanning of special components will be increasingly important in the future. The system shall therefore support all scanner types, from simple X-Y scanners to multiaxes robots and have facilities to configure and... [Pg.782]

The HILL-SCAN 30XX boards can be used in different PCs. Desktop- and tower-PCs as well suited for laboratory uses. For in-field inspections rugged notebooks and portable PCs are advantageous. A typical portable system is shown in Fig. 2 (USPC 3010), used in MUSE (Mobile Ultrasonic Equipment). This portable PC not only contains the boards for ultrasonic testing but also a controller with power supply for stepper motors, so that a manipulator can be connected directly. The MUSE system is enlarged with a water circulation system which enables a local immersion technique" for in-field inspections. A typical result is shown in Fig. 3, which presents a D-scan of a CFRP- component in RTM-techniques. The defect area caused by an impact is clearly indicated. The manipulator is described in [3]. [Pg.859]

The complete advanced 3D inspection system contains three main components the Advanced Inspection Robot - AIR-1, the new generation P-scan ultrasonic data acquisition system - PS-4 and the 3D ultrasonic simulation system - UltraSIM. [Pg.870]

The coin-tap test is a widely used teclinique on thin filament winded beams for detection of disbonded and delaminated areas. However, since the sensitivity of this teclinique depends not only on the operator but also on the thickness of the inspected component, the coin-tap testing technique is most sensitive to defects positioned near the surface of the laminate. Therefore, it was decided to constructed a new scaimer for automated ultrasonic inspection of filament winded beams. A complete test rig illustrated in figure 6 was constructed in order to reduce the scanning time. While the beam rotates the probe is moved from one end to the other of the beam. When the scarming is complete it is saved on diskette and can then be evaluated on a PC. The scanner is controlled by the P-scan system, which enables the results to be presented in three dimensions (Top, Side and End view). [Pg.983]

On metals in particular, the dependence of the radiation absorption by surface species on the orientation of the electrical vector can be fiilly exploited by using one of the several polarization techniques developed over the past few decades [27, 28, 29 and 30], The idea behind all those approaches is to acquire the p-to-s polarized light intensity ratio during each single IR interferometer scan since the adsorbate only absorbs the p-polarized component, that spectral ratio provides absorbance infonnation for the surface species exclusively. Polarization-modulation mediods provide the added advantage of being able to discriminate between the signals due to adsorbates and those from gas or liquid molecules. Thanks to this, RAIRS data on species chemisorbed on metals have been successfidly acquired in situ under catalytic conditions [31], and even in electrochemical cells [32]. [Pg.1782]

A second use of arrays arises in the detection of trace components of material introduced into a mass spectrometer. For such very small quantities, it may well be that, by the time a scan has been carried out by a mass spectrometer with a point ion collector, the tiny amount of substance may have disappeared before the scan has been completed. An array collector overcomes this problem. Often, the problem of detecting trace amounts of a substance using a point ion collector is overcome by measuring not the whole mass spectrum but only one characteristic m/z value (single ion monitoring or single ion detection). However, unlike array detection, this single-ion detection method does not provide the whole spectrum, and an identification based on only one m/z value may well be open to misinterpretation and error. [Pg.216]

The importance of linked scanning of metastable ions or of ions formed by induced decomposition is discussed in this chapter and in Chapter 34. Briefly, linked scanning provides information on which ions give which others in a normal mass spectrum. With this sort of information, it becomes possible to examine a complex mixture of substances without prior separation of its components. It is possible to look highly specifically for trace components in mixtures under circumstances in which other techniques could not succeed. Finally, it is possible to gain information on the molecular structures of unknown compounds, as in peptide and protein sequencing (see Chapter 40). [Pg.235]

As described above, the concentration of an eluting component in the ion source goes from zero to zero through a maximum. Where should the scan be taken Usually, the greater the amount of a... [Pg.264]


See other pages where Component scanned is mentioned: [Pg.75]    [Pg.117]    [Pg.59]    [Pg.55]    [Pg.275]    [Pg.93]    [Pg.88]    [Pg.6013]    [Pg.505]    [Pg.75]    [Pg.117]    [Pg.59]    [Pg.55]    [Pg.275]    [Pg.93]    [Pg.88]    [Pg.6013]    [Pg.505]    [Pg.102]    [Pg.157]    [Pg.260]    [Pg.327]    [Pg.330]    [Pg.378]    [Pg.467]    [Pg.558]    [Pg.640]    [Pg.743]    [Pg.751]    [Pg.752]    [Pg.804]    [Pg.842]    [Pg.855]    [Pg.891]    [Pg.990]    [Pg.668]    [Pg.84]    [Pg.253]    [Pg.255]    [Pg.256]    [Pg.257]    [Pg.257]    [Pg.257]    [Pg.258]    [Pg.258]    [Pg.259]    [Pg.261]    [Pg.264]    [Pg.265]    [Pg.265]   
See also in sourсe #XX -- [ Pg.263 ]




SEARCH



Differential scanning calorimetry components

Scanning confocal microscopes components

Scanning electron microscope components

© 2024 chempedia.info