Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Complexes with initiator

The first amino acid for reaction is jV-formylmethionine (fMet) which has a specific tRNA (tRNA 1 1) (as opposed to the Met-specific tRNA tRNAmMl 1). Using GTP hydrolysis as an energy source, the 30S subunit complexes with initiation factors IF1, IF2 and IF3. This complex binds the mRNA with the anticodon (3 -UAC-5 ) of the jV-formylmethionyl-tRNA M t (fMet-tRNAf 11 1) hydrogen bonding to the start codon (5 -AUG — 3 ) of the mRNA, the fMet-tRNA -Ml 1 binding at the so-called P site with release of IF3. [Pg.78]

In addition to four-coordinate Cr (cus) and ligand displacement adsorption at a complex with initially five-coordinate Cr3+(cus), one... [Pg.83]

Solvents of high polarity are desirable for solvation of ions. However they cannot be employed for ionic polymerizations. Thus highly polar hydroxyhc solvents, such as water and alcohols, react with and destroy most ionic initiators and propagating species. Other polar solvents such as ketones form highly stable complexes with initiators, thus preventing initiation reactions. Most ionic polymerizations are, therefore, carried out in low or moderately polar solvents such as methyl chloride, efliylene dichloride, and pentane. [Pg.476]

The kinetic mechanisms of chain polymerization reactions are relatively complex, with initiation, propagation, termination and transfer being the most significant steps in the overall reactions. However, the kinetic process can be more complex as a result of association or dissociation of the reacting species, viscosity increase or phase separation during polymerization, heterogeneity intrinsic to the process as in emulsion polymerization or some coordination... [Pg.31]

Chloride is determined by titrating with Hg(N03)2, forming soluble HgCb-The sample is acidified to within the pH range of 2.3-3.8 where diphenylcarbazone, which forms a colored complex with excess Hg +, serves as the visual indicator. Xylene cyanol FF is added as a pH indicator to ensure that the pH is within the desired range. The initial solution is a greenish blue, and the titration is carried out to a purple end point. [Pg.328]

Noncatalytic Reactions Chemical kinetic methods are not as common for the quantitative analysis of analytes in noncatalytic reactions. Because they lack the enhancement of reaction rate obtained when using a catalyst, noncatalytic methods generally are not used for the determination of analytes at low concentrations. Noncatalytic methods for analyzing inorganic analytes are usually based on a com-plexation reaction. One example was outlined in Example 13.4, in which the concentration of aluminum in serum was determined by the initial rate of formation of its complex with 2-hydroxy-1-naphthaldehyde p-methoxybenzoyl-hydrazone. ° The greatest number of noncatalytic methods, however, are for the quantitative analysis of organic analytes. For example, the insecticide methyl parathion has been determined by measuring its rate of hydrolysis in alkaline solutions. [Pg.638]

Extrinsic Pathway. Coagulation is initiated when tissue extracts with Hpid—protein properties are released from the membranes of endothehal cells following injury or insult. These substances, collectively designated tissue thromboplastin, complex with circulating Factor VII and in the presence of calcium ions subsequentiy activate Factor X (Fig. 1). In vitro evidence suggests that Factor X can be activated less rapidly through the interaction of kaUikrein [9001-01-8] with Factor VII. [Pg.172]

In 1979, a viable theory to explain the mechanism of chromium electroplating from chromic acid baths was developed (176). An initial layer of polychromates, mainly HCr3 0 Q, is formed contiguous to the outer boundary of the cathode s Helmholtz double layer. Electrons move across the Helmholtz layer by quantum mechanical tunneling to the end groups of the polychromate oriented in the direction of the double layer. Cr(VI) is reduced to Cr(III) in one-electron steps and a colloidal film of chromic dichromate is produced. Chromous dichromate is formed in the film by the same tunneling mechanism, and the Cr(II) forms a complex with sulfate. Bright chromium deposits are obtained from this complex. [Pg.143]

The tri- or tetraamine complex of copper(I), prepared by reduction of the copper(II) tetraamine complex with copper metal, is quite stable ia the absence of air. If the solution is acidified with a noncomplexiag acid, the formation of copper metal, and copper(II) ion, is immediate. If hydrochloric acid is used for the neutralization of the ammonia, the iasoluble cuprous chloride [7758-89-6], CuCl, is precipitated initially, followed by formation of the soluble ions [CuClj, [CuCl, and [CuCl as acid is iacreased ia the system. [Pg.253]

Methylthiophene is metallated in the 5-position whereas 3-methoxy-, 3-methylthio-, 3-carboxy- and 3-bromo-thiophenes are metallated in the 2-position (80TL5051). Lithiation of tricarbonyl(i7 -N-protected indole)chromium complexes occurs initially at C-2. If this position is trimethylsilylated, subsequent lithiation is at C-7 with minor amounts at C-4 (81CC1260). Tricarbonyl(Tj -l-triisopropylsilylindole)chromium(0) is selectively lithiated at C-4 by n-butyllithium-TMEDA. This offers an attractive intermediate for the preparation of 4-substituted indoles by reaction with electrophiles and deprotection by irradiation (82CC467). [Pg.60]

The equations connecting constants of stability of initial and subsequent complexes with constants of replacement can be considered ... [Pg.58]

Eigure 3 represents an illustrative biological application an Asp Asn mutation, carried out either in solution or in complex with a protein [25,26]. The calculation uses a hybrid amino acid with both an Asp and an Asn side chain. Eor convenience, we divide the system into subsystems or blocks [27] Block 1 contains the ligand backbone as well as the solvent and protein (if present) block 2 is the Asp moiety of the hybrid ligand side chain block 3 is the Asn moiety. We effect the mutation by making the Asn side chain gradually appear and the Asp side chain simultaneously disappear. We choose initially the hybrid potential energy function to have the form... [Pg.177]

Where there is a danger of contamination of a hydrocarbon polymer with such ions it is common practice to use a chelating agent which forms a complex with the metal. It is, however, important to stress that a chelating agent which effectively slows down oxidation initiated by one metal ion may have a prooxidant effect with another metal ion. Table 7.5 summarises some work by... [Pg.140]

A concerted [2 + 2] cycloaddition pathway in which an oxametallocycle intermediate is generated upon reaction of the substrate olefin with the Mn(V)oxo salen complex 8 has also been proposed (Scheme 1.4.5). Indeed, early computational calculations coupled with initial results from radical clock experiments supported the notion.More recently, however, experimental and computational evidence dismissing the oxametallocycle as a viable intermediate have emerged. In addition, epoxidation of highly substituted olefins in the presence of an axial ligand would require a seven-coordinate Mn(salen) intermediate, which, in turn, would incur severe steric interactions. " The presence of an oxametallocycle intermediate would also require an extra bond breaking and bond making step to rationalize the observation of trans-epoxides from dy-olefms (Scheme 1.4.5). [Pg.32]

The participation of a monomer molecule in the initiation step of polymerization has not been required in the examples described so far. Tris(thiocyanato) tris(pyri-dine) iron(III) complex forms a complex with methyl methacrylate [46]. By subjecting the compound to UV radiation, the complex decomposes to give SCN as the initiating radical. [Pg.250]

The spectra of the initial saturated solution, with a F Nb of approximately 6, are of particular interest because of the presence of a weak band at about 900-930 cm 1. This band can be attributed to NbO bonds in oxyfluoride complexes. Even small additions of HF lead to the disappearance of the above effect. This can be explained based on a complex solvatation model. In solutions with a F Nb ratio of about 6, hexafluoroniobate complex, NbF6, initiates the formation of HF that interacts with complex ions as a solvate. This process is called autosolvatation and is represented by two interactions. The first is a hydrolysis process that leads to the formation of HF ... [Pg.128]

Chlorination. When 75 was treated with chlorine in the presence of aluminium chloride, initial chlorination took place at the 5-position, but the reaction was rather unselective 5,8-di-, 5,7,8-tri-, and 5,6,7,8-tetra-chloroisoquinolines were also formed (64JOC329). Perchlorination has been achieved by initial reaction of the isoquinoline-aluminium chloride complex with chlorine, as above, followed by treatment with phosphorus pentachloride at 270°C in an autoclave [66JCS(C)2328]. Treatment of 1,8-dimethylisoquinoline with NCS gave the 5-chloro derivative (91NKK-1193). Meisenheimer reaction of isoquinoline 2-oxides with phosphoryl chloride gave 1-chloroisoquinoline (84MI2). [Pg.296]


See other pages where Complexes with initiator is mentioned: [Pg.403]    [Pg.1]    [Pg.403]    [Pg.17]    [Pg.403]    [Pg.1]    [Pg.403]    [Pg.17]    [Pg.491]    [Pg.533]    [Pg.182]    [Pg.23]    [Pg.244]    [Pg.436]    [Pg.268]    [Pg.271]    [Pg.282]    [Pg.64]    [Pg.75]    [Pg.268]    [Pg.465]    [Pg.213]    [Pg.127]    [Pg.133]    [Pg.290]    [Pg.357]    [Pg.487]    [Pg.152]    [Pg.1145]    [Pg.325]    [Pg.351]    [Pg.339]    [Pg.9]    [Pg.342]    [Pg.353]    [Pg.156]    [Pg.138]   
See also in sourсe #XX -- [ Pg.86 ]




SEARCH



Complex initiating

Initiation complex

© 2024 chempedia.info