Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Complex reactions transition-state theory

The case of m = Q corresponds to classical Arrhenius theory m = 1/2 is derived from the collision theory of bimolecular gas-phase reactions and m = corresponds to activated complex or transition state theory. None of these theories is sufficiently well developed to predict reaction rates from first principles, and it is practically impossible to choose between them based on experimental measurements. The relatively small variation in rate constant due to the pre-exponential temperature dependence T is overwhelmed by the exponential dependence exp(—Tarf/T). For many reactions, a plot of In(fe) versus will be approximately linear, and the slope of this line can be used to calculate E. Plots of rt(k/T" ) versus 7 for the same reactions will also be approximately linear as well, which shows the futility of determining m by this approach. [Pg.152]

Theoretical descriptions of absolute reaction rates in terms of the rate-limiting formation of an activated complex during the course of a reaction. Transition-state theory (pioneered by Eyring "", Pelzer and Wigner, and Evans and Polanyi ) has been enormously valuable, and beyond its application to chemical reactions, the theory applies to a wider spectrum of rate processes (eg., diffusion, flow of liquids, internal friction in large polymers, eta). Transition state theory assumes (1) that classical mechanics can be used to calculate trajectories over po-... [Pg.684]

Absolute Reaction Rate Theory of Eyring Activated Complex- or Transition State- Theory. See "Absolute Rate Theory in Vol 1 of Encycl, p A4-R and in Ref 96, p 134... [Pg.601]

Collision theory, as its name might suggest, focuses on the collisions between particles. The collisions must be frequent, and the colliding particles must have sufficient energy to form an activated complex. The transition-state theory focuses on the behavior of the activated complex. According to the transition-state theory, there are three main factors that determine if a reaction will occur ... [Pg.394]

The competition between intramolecular vibrational relaxation and chemical reaction has been discussed in terms of the applicability of transition state theory to the kinetic analysis [6], If the environment functions mainly as a heat bath to ensure thermalization among the vibrational modes in the excited complex, then transition state theory is a good approximation. On the other hand, when the reaction is too fast for thermalization to occur the rate can depend upon the initial vibronic state. Prompt reaction and prompt intersystem crossing are, by definition, examples of the latter limit. [Pg.227]

In summary, collision theory provides a good physical picture of bimolecular reactions, even though the structure of the molecules is not taken into account. Also, it is assumed that reaction takes place instantaneously in practice, the reaction itself requires a certain amount of time. The structure of the reaction complex must evolve, and this must be accounted for in a reaction rate theory. For some reactions, the rate coefficient actually decreases with increasing temperature, a phenomenon that collision theory does not describe. Finally, real molecules interact with each other over distances greater than the sum of their hard-sphere radii, and in many cases these interactions can be very important. For example, ions can react via long-range Coulomb forces at a rate that exceeds the collision limit. The next level of complexity is transition state theory. [Pg.79]

A collision theory of even gas phase reactions is not totally satisfactory, and the problems with the steric factor that we described earfier make this approach more empirical and qualitative than we would like. Transition state theory, developed largely by Henry Eyring, takes a somewhat different approach. We have already considered the potential energy surfaces that provide a graphical energy model for chemical reactions. Transition state theory (or activated complex theory) refers to the details of how reactions become products. For a reaction fike... [Pg.119]

Collision state theory is useful for gas-phase reactions of simple atoms and molecules, but it cannot adequately predict reaction rates for more complex molecules or molecules in solution. Another approach, called transition-state theory (or activated-complex theory), was developed by Henry Eyring and others in the 1930s. Because it is applicable to a wide range of reactions, transition-state theory has become the major theoretical tool in the prediction of chemical kinetics. [Pg.742]

In more recent work, Ikushima et al. (279) applied the solubility parameter concept to the isoprene and methyl acrylate reaction to evaluate the solvent properties of SCCO2 as well as the mutual affinity among the various chemical species present in the reaction mixture. They estimated the pressure dependence of the solubility parameter of the activated complex through transition state theory at 50°C over the pressure range of 70-200 bar to study the nature of the complex and the effect of the solvent on the reaction. They observed that the solubility parameter of the activated complex approaches that of the reactants as the pressure approaches the critical point. This suggests that the nature of the activated complex becomes more similar to that of the reactants, hence the energy needed for formation of the complex becomes smaller near the critical point. That is, the reaction rate for formation of the complex is enhanced in the vicinity of the critical point, thus driving the overall reaction to the product. [Pg.149]

A key development in reaction-rate theory was the introduction of activated complex or transition-state theory. This is a powerful formalism which enables one to predict the rate constant of a reaction step based on knowledge of the energetics and dynamics of the reactant molecules and their intermediates formed in the course of the reaction. Owing to the advance of modern spectroscopic and computational tools, direct information on the activated complexes and short-lived intermediates... [Pg.3]

In summary, a wealtli of experimental data as well as a number of sophisticated computer simulations univocally indicate that two important effects underlie the acceleration of Diels-Alder reactions in aqueous media hydrogen bonding and enforced hydrophobic interactionsIn terms of transition state theory hydrophobic hydration raises the initial state more tlian tlie transition state and hydrogen bonding interactions stabilise ftie transition state more than the initial state. The highly polarisable activated complex plays a key role in both of these effects. [Pg.24]

Electrode kinetics lend themselves to treatment usiag the absolute reaction rate theory or the transition state theory (36,37). In these treatments, the path followed by the reaction proceeds by a route involving an activated complex where the element determining the reaction rate, ie, the rate limiting step, is the dissociation of the activated complex. The general electrode reaction may be described as ... [Pg.511]

A more general, and for the moment, less detailed description of the progress of chemical reactions, was developed in the transition state theory of kinetics. This approach considers tire reacting molecules at the point of collision to form a complex intermediate molecule before the final products are formed. This molecular species is assumed to be in thermodynamic equilibrium with the reactant species. An equilibrium constant can therefore be described for the activation process, and this, in turn, can be related to a Gibbs energy of activation ... [Pg.47]

The natiue of the rate constants k, can be discussed in terms of transition-state theory. This is a general theory for analyzing the energetic and entropic components of a reaction process. In transition-state theory, a reaction is assumed to involve the formation of an activated complex that goes on to product at an extremely rapid rate. The rate of deconposition of the activated con lex has been calculated from the assumptions of the theory to be 6 x 10 s at room temperature and is given by the expression ... [Pg.199]

The most widely accepted treatment of reaction rates is transition state theory (TST), devised by Henry Eyring.17 It has also been known as absolute rate theory and activated complex theory, but these terms are now less widely used. [Pg.169]

In transition state theory, a reaction takes place only if two molecules acquire enough energy, perhaps from the surrounding solvent, to form an activated complex and cross an energy barrier. [Pg.684]

It can be difficult to estimate theoretically the bond lengths and vibrational frequencies for the activated complex and the energy barrier for its formation. It is of interest to assess how the uncertainty in these parameters affect the rate constant predicted from transition state theory (TST). For the exchange reaction... [Pg.442]

We have just discussed several common strategies that enzymes can use to stabilize the transition state of chemical reactions. These strategies are most often used in concert with one another to lead to optimal stabilization of the binary enzyme-transition state complex. What is most critical to our discussion is the fact that the structures of enzyme active sites have evolved to best stabilize the reaction transition state over other structural forms of the reactant and product molecules. That is, the active-site structure (in terms of shape and electronics) is most complementary to the structure of the substrate in its transition state, as opposed to its ground state structure. One would thus expect that enzyme active sites would bind substrate transition state species with much greater affinity than the ground state substrate molecule. This expectation is consistent with transition state theory as applied to enzymatic catalysis. [Pg.32]

This chapter treats the descriptions of the molecular events that lead to the kinetic phenomena that one observes in the laboratory. These events are referred to as the mechanism of the reaction. The chapter begins with definitions of the various terms that are basic to the concept of reaction mechanisms, indicates how elementary events may be combined to yield a description that is consistent with observed macroscopic phenomena, and discusses some of the techniques that may be used to elucidate the mechanism of a reaction. Finally, two basic molecular theories of chemical kinetics are discussed—the kinetic theory of gases and the transition state theory. The determination of a reaction mechanism is a much more complex problem than that of obtaining an accurate rate expression, and the well-educated chemical engineer should have a knowledge of and an appreciation for some of the techniques used in such studies. [Pg.76]

The transition state theory provides a useful framework for correlating kinetic data and for codifying useful generalizations about the dynamic behavior of chemical systems. This theory is also known as the activated complex theory, the theory of absolute reaction rates, and Eyring s theory. This section introduces chemical engineers to the terminology, the basic aspects, and the limitations of the theory. [Pg.112]


See other pages where Complex reactions transition-state theory is mentioned: [Pg.118]    [Pg.479]    [Pg.284]    [Pg.4]    [Pg.2]    [Pg.280]    [Pg.778]    [Pg.781]    [Pg.218]    [Pg.200]    [Pg.448]    [Pg.460]    [Pg.683]    [Pg.683]    [Pg.939]    [Pg.969]    [Pg.133]    [Pg.279]    [Pg.3]    [Pg.436]    [Pg.670]    [Pg.192]    [Pg.149]    [Pg.112]    [Pg.118]    [Pg.18]    [Pg.143]   
See also in sourсe #XX -- [ Pg.59 , Pg.60 ]




SEARCH



Complexity theory

Theory complex

Transition complexes, reaction

Transition state complex

Transition state theory reaction

Transition states reactions

© 2024 chempedia.info