Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Combustion rocket propellant

Gun Propellents. Although the stresses on individual gun propellant grains are less severe because of the small size, these propellants must withstand much higher weapon pressures and accelerations. Formulation options are usually more limited for gun propellants than for rocket propellants because the products of combustion must not foul or corrode a gun, should have a low flame temperature, and should exhibit minimum flash and smoke characteristics. Gun propellants are examined microscopically for porosity, are tested for mechanical characteristics, and fired in closed bombs to determine the burning characteristics. [Pg.34]

Oxidizers. The characteristics of the oxidizer affect the baUistic and mechanical properties of a composite propellant as well as the processibihty. Oxidizers are selected to provide the best combination of available oxygen, high density, low heat of formation, and maximum gas volume in reaction with binders. Increases in oxidizer content increase the density, the adiabatic flame temperature, and the specific impulse of a propellant up to a maximum. The most commonly used inorganic oxidizer in both composite and nitroceUulose-based rocket propellant is ammonium perchlorate. The primary combustion products of an ammonium perchlorate propellant and a polymeric binder containing C, H, and O are CO2, H2, O2, and HCl. Ammonium nitrate has been used in slow burning propellants, and where a smokeless exhaust is requited. Nitramines such as RDX and HMX have also been used where maximum energy is essential. [Pg.39]

Grade C, Type II is typical of Hquid oxygen used as a rocket propellant oxidizer. Particulate content is limited because of the critical clearances found in mechanical parts of the rocket engine. In addition to water, acetylene and methane are limited because, on long standing, oxygen evaporation could cause concentration of these combustible contaminants to reach hazardous levels. [Pg.480]

Rocket propellant is a mixture of combustible substances that is burned inside the combustion chamber of a rocket engine. Burning is the chemical process of decomposition and oxidation of the propellant. The resulting highly heated and compressed gas (propulsive mass) is ejected from a combustion chamber and facilitates propulsion—movement of the aggregate attached to the rocket engine. In physi-... [Pg.1019]

Robert S. Brown, Ralph Anderson, and Larry J. Shannon, Ignition and Combustion of Solid Rocket Propellants... [Pg.343]


See other pages where Combustion rocket propellant is mentioned: [Pg.5]    [Pg.39]    [Pg.41]    [Pg.41]    [Pg.1019]    [Pg.1]    [Pg.2]    [Pg.3]    [Pg.5]    [Pg.7]    [Pg.9]    [Pg.11]    [Pg.13]    [Pg.15]    [Pg.17]    [Pg.19]    [Pg.21]    [Pg.23]    [Pg.25]    [Pg.27]    [Pg.29]    [Pg.31]    [Pg.33]    [Pg.35]    [Pg.37]    [Pg.39]    [Pg.41]    [Pg.43]    [Pg.45]    [Pg.47]    [Pg.49]    [Pg.51]    [Pg.53]    [Pg.55]    [Pg.57]    [Pg.59]    [Pg.61]    [Pg.63]    [Pg.65]    [Pg.67]    [Pg.69]    [Pg.179]    [Pg.1527]    [Pg.1901]   
See also in sourсe #XX -- [ Pg.85 ]




SEARCH



Combustion instabilities in liquid-propellant rockets

Extended model of combustion in a liquid-propellant rocket motor

Propellants combustion

Rocket propellants

Rockets

Rockets rocket

Simplified model of combustion in a liquid-propellant rocket motor

© 2024 chempedia.info