Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Colloids thermally

C02-expanded ethanol, porous hollow metal oxide nanoparticles have been prepared using a carbon template by Sun and co-workers.A metal salt, such as C0 j(NO3)3,(CO3)z(OH) , wHaO, can be prepared from the corresponding metal nitrate in COa-expanded ethanol and deposited on the surface of template carbon colloids. Thermal treatment in nitrogen affords CoO nanocrystals. When calcined in air, these can be transformed to C03O4. Electron microscopy images of these dense hollow porous nanostructures are shown in Fig. 9. The improved performance of this material as an anode in Li-02 battery has also been demonstrated, along with the capacity to generate FeO NiO and MnO, nanocomposites. [Pg.44]

Although it is hard to draw a sharp distinction, emulsions and foams are somewhat different from systems normally referred to as colloidal. Thus, whereas ordinary cream is an oil-in-water emulsion, the very fine aqueous suspension of oil droplets that results from the condensation of oily steam is essentially colloidal and is called an oil hydrosol. In this case the oil occupies only a small fraction of the volume of the system, and the particles of oil are small enough that their natural sedimentation rate is so slow that even small thermal convection currents suffice to keep them suspended for a cream, on the other hand, as also is the case for foams, the inner phase constitutes a sizable fraction of the total volume, and the system consists of a network of interfaces that are prevented from collapsing or coalescing by virtue of adsorbed films or electrical repulsions. [Pg.500]

Bead Polymerization Bulk reaction proceeds in independent droplets of 10 to 1,000 [Lm diameter suspended in water or other medium and insulated from each other by some colloid. A typical suspending agent is polyvinyl alcohol dissolved in water. The polymerization can be done to high conversion. Temperature control is easy because of the moderating thermal effect of the water and its low viscosity. The suspensions sometimes are unstable and agitation may be critical. Only batch reaciors appear to be in industrial use polyvinyl acetate in methanol, copolymers of acrylates and methacrylates, polyacrylonitrile in aqueous ZnCh solution, and others. Bead polymerization of styrene takes 8 to 12 h. [Pg.2102]

Perikinetic motion of small particles (known as colloids ) in a liquid is easily observed under the optical microscope or in a shaft of sunlight through a dusty room - the particles moving in a somewhat jerky and chaotic manner known as the random walk caused by particle bombardment by the fluid molecules reflecting their thermal energy. Einstein propounded the essential physics of perikinetic or Brownian motion (Furth, 1956). Brownian motion is stochastic in the sense that any earlier movements do not affect each successive displacement. This is thus a type of Markov process and the trajectory is an archetypal fractal object of dimension 2 (Mandlebroot, 1982). [Pg.161]

Chalcogenides of Cd are similar to those of Zn and display the same duality in their structures. The sulfide and selenide are more stable in the hexagonal form whereas the telluride is more stable in the cubic form. CdS is the most important compound of cadmium and, by addition of CdSe, ZnS, HgS, etc., it yields thermally stable pigments of brilliant colours from pale yellow to deep red, while colloidal dispersions are used to colour transparent glasses. [Pg.1210]

Consequently, when selecting and blending the various raw materials used in all-polymer/all-organic formulations, the questions of thermal and hydrolytic stability and ability to transport or otherwise control colloidal iron oxides (in addition to possible adverse effects such as copper corrosion) become increasingly important at higher boiler temperatures and pressures. [Pg.457]

The solgel process uses a liquid reactive precursor material that is converted to the final product by chemical and thermal means. This precursor is prepared to form a colloidal suspension or solution (sol) which goes through a gelling stage (gel) followed by drying and consolidation. The process requires only moderate temperatures, in many cases less than half the conventional glass or ceramics... [Pg.497]

Let us add here that the fabrication of polycrystalline semiconductive films with enhanced photoresponse and increased resistance to electrochemical corrosion has been attempted by introducing semiconductor particles of colloidal dimensions to bulk deposited films, following the well-developed practice of producing composite metal and alloy deposits with improved thermal, mechanical, or anti-corrosion properties. Eor instance, it has been reported that colloidal cadmium sulfide [105] or mercuric sulfide [106] inclusions significanfly improve photoactivity and corrosion resistance of electrodeposited cadmium selenide. [Pg.233]

Colloidal suspensions stabilized by electrostatic repulsion are very sensitive to any phenomenon able to disrupt the double layer like ionic strength or thermal motion. [Pg.264]

Hydrophobic colloidal particles move readily in the liqnid phase under the effect of thermal motion of the solvent molelcnles (in this case the motion is called Brownian) or under the effect of an external electric field. The surfaces of such particles as a rule are charged (for the same reasons for which the snrfaces of larger metal and insnlator particles in contact with a solution are charged). As a result, an EDL is formed and a certain valne of the zeta potential developed. [Pg.600]

In the chemical preparation of unprotected metal colloids, the metal concentration usually has a significant influence on the particle size of obtained metal nanoclusters. For example, when increasing Pd concentration from 0.1 to 1.0 mM in the preparation of Pd metal colloids by the thermal decomposition of Pd acetate in methyl isobutyl ketone, the average Pd particle size increased from 8 to 140nm [6,7]. However, in the alkaline EG synthesis method, the size of metal nanoclusters was only slightly dependent on the metal concentration of the colloidal solution. The colloidal Pt particles prepared with a metal concentration of 3.7 g/1 had an average diameter of... [Pg.329]

R. D. Shupe and T. D. Baugh. Thermal stability and degradation mechanism of alkylbenzene sulfonates in alkaline media. J Colloid Interface Sci, 145(l) 235-254, August 1991. [Pg.460]

Absorption spectra of CdS colloid indicate the formation of quantum sized CdS particles. The particle size increased upon sonication, indicated by the red shift in the onset of absorption. The particle size was highly dependent on the mercaptan used, because of the absorption of the mercaptan on the particle acting as a capping agent and the rate of H2S produced. Study of mercaptan systems revealed that there was also a thermal process responsible for CdS formation. 25% of the total CdS produced sonochemically was formed via a thermal mechanism presumably in the hot shell around the compressed bubble. CdS colloid could be dissolved quite readily by sonicating solutions under air saturated conditions [89] by the following reaction,... [Pg.235]

Although the single bubble experiment in Fig. 14.10b and the aforementioned multi-bubble work of Didenko et al. does support the hypothesis that thermal conductivity is a defining parameter of SL emission intensity, an alternative explanation attributes the trend in multi-bubble systems to the gas solubility, rather than the thermal conductivity. If the SL data from Fig. 14.9 is re-plotted as a function of the gas solubility, as shown below in Fig. 14.11, a very good correlation is found. This explanation is supported by several studies by Okitsu et al. [42, 59]. They found sonochemical activity to obey the same trend for the rare gases as for thermal conductivity, SL luminosity and temperature, as described above. This is evident in Fig. 14.12, which shows the sonochemical reduction of Au(III) to colloidal gold as a function of sonication time for different gas atmospheres. [Pg.370]


See other pages where Colloids thermally is mentioned: [Pg.253]    [Pg.253]    [Pg.539]    [Pg.401]    [Pg.354]    [Pg.82]    [Pg.184]    [Pg.102]    [Pg.14]    [Pg.59]    [Pg.509]    [Pg.516]    [Pg.522]    [Pg.560]    [Pg.44]    [Pg.49]    [Pg.102]    [Pg.263]    [Pg.498]    [Pg.73]    [Pg.303]    [Pg.33]    [Pg.233]    [Pg.272]    [Pg.274]    [Pg.305]    [Pg.327]    [Pg.355]    [Pg.384]    [Pg.402]    [Pg.419]    [Pg.570]    [Pg.575]    [Pg.578]    [Pg.776]    [Pg.249]    [Pg.377]    [Pg.91]   
See also in sourсe #XX -- [ Pg.510 ]




SEARCH



Colloidal metals precursor compound thermal decomposition

© 2024 chempedia.info