Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Colloids dispersion methods

PPY particles were produced by colloidal dispersion method (257-259). Monolayer and multilayer PPYs were obtained by thiol-Au interaction (260,261), by deposition on YBa2Cu307 j (262,263), by intercalation in FeOCl (264), and by monomer amphiphilicity (265). PPY wires (266-268), PPY tubes (269-271), and PPY microcontainers (272,273) have also been synthesized. [Pg.5386]

Overview. Three approaches are used to make most sol—gel products method 1 involves gelation of a dispersion of colloidal particles method 2 employs hydrolysis and polycondensation of alkoxide or metal salts precursors followed by supercritical drying of gels and method 3 involves hydrolysis and polycondensation of alkoxide precursors followed by aging and drying under ambient atmospheres. [Pg.249]

We prepared ceria on Ni substrate by sol-gel coating method. Ceria sol solution was prepared with ceria sol solution (Alfa, 20% in H2O, colloidal dispersion) mixed with ethanol (99.9%, Hayman) with weight ratio (1 2) and stirred. Ceria was deposited on Ni substrate by dip coating method. The variation number of dipping was carried out to obtain different coating ratio. The anode was completely dipped into the ceria sol solution for several seconds and dried at a temperature of 50 C for 24 hours in air atmosphere followed by calcination at 700 C for 30 minutes in 5%H2-N2 atmosphere. [Pg.601]

PVP, a water soluble amine-based pol5mer, was found to be an optimum protective agent because the reduction of noble metal salts by polyols in the presence of other surfactants often resulted in non-homogenous colloidal dispersions. PVP was the first material to be used for generating silver and silver-palladium stabilized particles by the polyol method [231-233]. By reducing the precur-sor/PVP ratio, it is even possible to reduce the size of the metal particles to few nanometers. These colloidal particles are isolable but surface contaminations are easily recognized because samples washed with the solvent and dried in the air are subsquently not any more pyrophoric [231,234 236]. [Pg.31]

Herein we briefly mention historical aspects on preparation of monometallic or bimetallic nanoparticles as science. In 1857, Faraday prepared dispersion solution of Au colloids by chemical reduction of aqueous solution of Au(III) ions with phosphorous [6]. One hundred and thirty-one years later, in 1988, Thomas confirmed that the colloids were composed of Au nanoparticles with 3-30 nm in particle size by means of electron microscope [7]. In 1941, Rampino and Nord prepared colloidal dispersion of Pd by reduction with hydrogen, protected the colloids by addition of synthetic pol5mer like polyvinylalcohol, applied to the catalysts for the first time [8-10]. In 1951, Turkevich et al. [11] reported an important paper on preparation method of Au nanoparticles. They prepared aqueous dispersions of Au nanoparticles by reducing Au(III) with phosphorous or carbon monoxide (CO), and characterized the nanoparticles by electron microscopy. They also prepared Au nanoparticles with quite narrow... [Pg.49]

Reduction of two different precious metal ions by refluxing in ethanol/water in the presence of PVP gave a colloidal dispersion of core/shell structured bimetallic nanoparticles. In the case of Pd and Au ions, e.g., the colloidal dispersions of bimetallic nanoparticles with a Au core/Pd shell structure are produced. In contrast, it is difficult to prepare bimetallic nanoparticles with the inverted core/shell (in this case, Pd-core/Au-shell) structure. The sacrificial hydrogen strategy was used to construct the inverted core/shell structure, where the colloidal dispersions of Pd-cores are treated with hydrogen and then the solution of the second element, Au ions, is slowly added to the dispersions. This novel method, developed by us, gave the inverted core/shell structured bimetallic nanoparticles. The Pd-core/Au-shell structure was confirmed by FT-IR spectra of adsorbed CO [144]. [Pg.56]

Principally purification and characterization methods of monometallic nanoparticles are directly applied to those of bimetallic nanoparticles. Purification of metal nanoparticles dispersed in solution is not so easy. So, in classical colloid chemistry, contamination is carefully avoided. For example, people used pure water, distilled three times, and glass vessels, cleaned by steam, for preparation of colloidal dispersions. In addition, the reagents which could not byproduce contaminates were used for the preparation. Recently, however, various kinds of reagents were used for the reaction and protection. Thus, the special purification is often required especially when the nanoparticles are prepared by chemical methods. [Pg.58]

This method is used particularly for colloids. A colloidal dispersion is forced through a long column packed with nonporous beads with an approximate radius of 10pm. Particles of different particle size travel with different speeds around the beads and are thus collected in size fractions. [Pg.280]

Toshima et al. obtained colloidal dispersions of platinum by hydrogen- and photo-reduction of chloroplatinic acid in an aqueous solution in the presence of various types of surfactants such as dodecyltrimethylammonium (DTAC) and sodium dodecylsulfate (SDS) [60]. The nanoparticles produced by hydrogen reduction are bigger and more widely distributed in size than those resulting from the photo-irradiation method. Hydrogenation of vinylacetate was chosen as a catalytic reaction to test the activity of these surfactant-stabilized colloids. The reaction was performed in water under atmospheric pressure of hydrogen at 30 °C. The photo-reduced colloidal platinum catalysts proved to be best in terms of activity, a fact explained by their higher surface area as a consequence of their smaller size. [Pg.227]

Other Methods. Other reductants like hydrazine, sodium metal, etc. can be used for the reduction of metal ions. Decomposition of metal salts or complexes by heat treatment is sometimes used for synthesis of fine particles as well. In this case the valence of metals in the fine particles should be carefully examined. Recently, irradiation of ultrasonic wave was applied to the synthesis of colloidal dispersions of metal fine particles. [Pg.435]

Here, the detailed synthetic methods and procedures of colloidal dispersions of bimetallic nanoparticles in a homogenous solution are described because the bimetallic system is one of the recent greatest topics of the fine metal particles (2). [Pg.436]

Coreduction of Mixed Ions. Coreduction of mixed ions is the simplest method to synthesize bimetallic nanoparticles. However, this method cannot be always successful. Au/Pt bimetallic nanoparticles were prepared by citrate reduction by Miner et al. from the corresponding two metal salts, such as tetrachloroauric(III) acid and hexachloroplatinic(IV) acid (24). Reduction of the metal ions is completed within 4 h after the addition of citrate. Miner et al. studied the formation of colloidal dispersion by ultraviolet-visible (UV-Vis) spectrum, which is not a simple sum of those of the two monometallic nanoparticles, indicating that the bimetallic nanoparticles have an alloy structure. The average diameter of the bimetallic nanoparticles depends on the metal composition. By a similar method, citrate-stabilized Pd/Pt bimetallic nanoparticles can also be prepared. [Pg.436]

An alcohol reduction method has been applied to the synthesis of polymer-stabilized bimetallic nanoparticles. They have been prepared by simultaneous reduction of the two corresponding metal ions with refluxing alcohol. For example, colloidal dispersions of Pd/Pt bimetallic nanoparticles can be prepared by refluxing the alcohol-water (1 1 v/v) mixed solution of palladium(II) chloride and hexachloro-platinic(IV) acid in the presence of poly(/V-vinyl-2-pyrrolidone) (PVP) at about 90-95°C for 1 h (Scheme 9.1.5) (25). The resulting brownish colloidal dispersions are stable and neither precipitate nor flocculate over a period of several years. Pd/ Pt bimetallic nanoparticles thus obtained have a so-called core/shell structure, which is proved by an EXAFS technique (described in Section 9.1.3.3). [Pg.436]

Fig. 9.1.7 Image of the colloidal dispersions of the envelopes with and without metal nanoparticles. Light scattering can measure the average size of both envelopes, and the Taylor dispersion method can do only the size of the envelopes with metal nanoparticles. Fig. 9.1.7 Image of the colloidal dispersions of the envelopes with and without metal nanoparticles. Light scattering can measure the average size of both envelopes, and the Taylor dispersion method can do only the size of the envelopes with metal nanoparticles.
Preparation of Emulsions. An emulsion is a system in which one liquid is colloidally dispersed in another (see Emulsions). The general method for preparing an oil-in-water emulsion is to combine the oil with a compatible fatty acid, such as an oleic, stearic, or rosin acid, and separately mix a proportionate quantity of an alkali, such as potassium hydroxide, with the water. The alkali solution should then be rapidly stirred to develop as much shear as possible while the oil phase is added. Use of a homogenizer to force the resulting emulsion through a fine orifice under pressure further reduces its oil particle size. Liquid oleic acid is a convenient fatty acid to use in emulsions, as it is readily miscible with most oils. [Pg.258]

Crosslinked polyacrylamide latexes encapsulating microparticles of silica and alumina have also been prepared by this method [179], Three steps are involved a) formation of a stable colloidal dispersion of the inorganic particles in an aqueous solution containing acrylamide, crosslinker, dispersant, and initiator b) HIPE preparation with this aqueous solution as the dispersed phase and c) polymerisation. The latex particles are polyhedral in shape, shown clearly by excellent scanning electron micrographs, and have sizes of between 1 and 5 pm. [Pg.206]

Stains in the form of colloidal dispersions The need for highly sensitive detection methods for proteins after blotting (e.g., electroblotting, dot-blotting, slot blotting) applied to nitrocellulose or PYDF membranes drove scientists attention to develop new stains. It was discovered that the stains in the form of colloidal dispersions are suitable for such applications. The most commonly used colloidal stains are... [Pg.100]

Tachibana T, Nakamura A. A method for preparing an aqueous colloidal dispersion of organic materials by using water-soluble polymers dispersion of beta-carotene by polyvinylpyrrolidone. Kolloid-Z Polym 1965 203 130-133. [Pg.194]

If the intensity of light scattered by a colloidal dispersion is measured as a function of c and 0, the Zimm method enables us to convert this information into several parameters that characterize the colloid M, B, and Rg. In some situations this is more information than is actually needed. If spatial extension is the only information sought, a simpler method for evaluating it employs the so-called dissymmetry ratio. [Pg.222]

Chu 1991 Schmitz 1990). For example, the dynamic version of the diffusing wave spectroscopy described in Vignette V is a form of DLS, although in diffusing wave spectroscopy the method of analysis is different in view of multiple scattering. Most of the advanced developments are beyond the scope of this book. However, DLS is currently a routine laboratory technique for measuring diffusion coefficients, particle size, and particle size distributions in colloidal dispersions, and our objective in this section is to present the most essential ideas behind the method and show how they are used for particle size and size distribution measurements. [Pg.237]

Definitions. Colloids are solid particles with diameters of 1 100 nanometers, A sol is a dispersion of colloidal particles in a liquid. A gel is an interconnected rigid network of sub-micrometer dimensions. A gel can be formed from an array of discrete colloidal particles (Method I) or the 3-D network can be formed from the hydrolysis and condensation of liquid meial alkoxide precursors (Methods 2 and 3). shown in Fig. 11. The metal alkoxide precursors used in Methods 2 and 3 are usually Si(OR)4 where R is CHj. C-Hj. or C3H7. The metal ions can be Si, Ti. Sn. Al, and so on,... [Pg.729]

Studies of liver structure may be carried out using colloidal dispersions labelled with "mTc.551 The "mTc-sulfur colloid provides one such example and is usually described as 99mTc2S7, although its chemical composition remains uncertain. An improved method for the preparation of this... [Pg.989]


See other pages where Colloids dispersion methods is mentioned: [Pg.131]    [Pg.131]    [Pg.150]    [Pg.409]    [Pg.541]    [Pg.293]    [Pg.52]    [Pg.49]    [Pg.51]    [Pg.143]    [Pg.197]    [Pg.119]    [Pg.228]    [Pg.141]    [Pg.250]    [Pg.8]    [Pg.444]    [Pg.210]    [Pg.154]    [Pg.2]    [Pg.431]    [Pg.431]    [Pg.432]    [Pg.628]    [Pg.100]    [Pg.562]    [Pg.541]    [Pg.107]   
See also in sourсe #XX -- [ Pg.219 ]




SEARCH



Colloidal dispersions biological method

Colloidal dispersions chemical reaction method

Colloidal dispersions condensation method

Colloidal dispersions direct dispersion method

Dispersion methods

Dispersive methods

Methods for Preparing Colloidal Dispersions

© 2024 chempedia.info