Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Colloids continuous phase

Milk is a dilute emulsion consisting of an oil/fat dispersed phase and an aqueous colloidal continuous phase. The physical properties of milk are similar to those of water but are modified by the presence of various solutes (proteins, lactose and salts) in the continuous phase and by the degree of dispersion of the emulsified and colloidal components. [Pg.356]

Two kinds of barriers are important for two-phase emulsions the electric double layer and steric repulsion from adsorbed polymers. An ionic surfactant adsorbed at the interface of an oil droplet in water orients the polar group toward the water. The counterions of the surfactant form a diffuse cloud reaching out into the continuous phase, the electric double layer. When the counterions start overlapping at the approach of two droplets, a repulsion force is experienced. The repulsion from the electric double layer is famous because it played a decisive role in the theory for colloidal stabiUty that is called DLVO, after its originators Derjaguin, Landau, Vervey, and Overbeek (14,15). The theory provided substantial progress in the understanding of colloidal stabihty, and its treatment dominated the colloid science Hterature for several decades. [Pg.199]

A separate class of materials, known as protective colloids, exerts a stabilizing influence by acting as a bridge between the continuous phase and the particles which they envelop. In many instances the optimum stabilizing effect is achieved when the protective colloids are used in conjunction with a compatible interfacial tension depressant. The protective colloid must have an affinity for the continuous phase. When stabilization occurs through protective colloidal action, the particles lose their surface property identities in respect to charge, agglomeration, etc., and assume the properties of the protective colloid. [Pg.86]

Routh and Russel [10] proposed a dimensionless Peclet number to gauge the balance between the two dominant processes controlling the uniformity of drying of a colloidal dispersion layer evaporation of solvent from the air interface, which serves to concentrate particles at the surface, and particle diffusion which serves to equilibrate the concentration across the depth of the layer. The Peclet number, Pe is defined for a film of initial thickness H with an evaporation rate E (units of velocity) as HE/D0, where D0 = kBT/6jT ir- the Stokes-Einstein diffusion coefficient for the particles in the colloid. Here, r is the particle radius, p is the viscosity of the continuous phase, T is the absolute temperature and kB is the Boltzmann constant. When Pe 1, evaporation dominates and particles concentrate near the surface and a skin forms, Figure 2.3.5, lower left. Conversely, when Pe l, diffusion dominates and a more uniform distribution of particles is expected, Figure 2.3.5, upper left. [Pg.97]

A colloid is defined as a system consisting of discrete particles in the size range of 1 nm to 1 pm, distributed within a continuous phase [153], On the basis of the interaction of particles, molecules, or ions of the disperse phase with molecules of the dispersion medium-, colloidal systems can be classified as being lyophilic or lyophobic. In lyophilic systems, the disperse phase molecules are dissolved within the continuous phase and in the colloidal size range or spontaneously form aggregates in the colloidal size range (association systems). In lyophobic systems, the disperse phase is very poorly soluble or insoluble in the continuous phase. During the last several decades, the use of colloids in... [Pg.273]

Finally, we have designed and synthesized a series of block copolymer surfactants for C02 applications. It was anticipated that these materials would self-assemble in a C02 continuous phase to form micelles with a C02-phobic core and a C02-philic corona. For example, fluorocarbon-hydrocarbon block copolymers of PFOA and PS were synthesized utilizing controlled free radical methods [104]. Small angle neutron scattering studies have demonstrated that block copolymers of this type do indeed self-assemble in solution to form multimolecular micelles [117]. Figure 5 depicts a schematic representation of the micelles formed by these amphiphilic diblock copolymers in C02. Another block copolymer which has proven useful in the stabilization of colloidal particles is the siloxane based stabilizer PS-fr-PDMS [118,119]. Chemical... [Pg.122]

Double-layer forces are commonly used to induce repulsive interactions in colloidal systems. However, the range of electrostatic forces is strongly reduced by increasing the ionic strength of the continuous phase. Also, electrostatic effects are strong only in polar solvents, which is a severe restriction. An alternative way to create long-range repulsion is to adsorb macromolecules at the interface between the dispersed and the continuous phase. Polymer chains may be densely adsorbed on surfaces where they form loops and tails with a very broad distribution of sizes... [Pg.63]

Material comprising more than one phase where at least one of the phases consists of finely divided phase domains, often in the colloidal size range, distributed throughout a continuous phase domain. [Pg.192]

System in which particles of colloidal size of any nature (e.g., solid, liquid or gas) are dispersed in a continuous phase of a different composition (or state). (Gold Book online, 1972 entry [2].)... [Pg.213]

Polymerizations that are carried out in nonaqueous continuous phases instead of water are termed dispersion polymerizations regardless of whether the product consists of filterable particles or of a nonaqueous colloidal system. [Pg.30]

One type of colloidal system has been chosen for discussion, a system in which the solid metal phase has been shrank in three dimensions to give small solid particles in Brownian motion in a solution. Such a colloidal suspension consisting of discrete, separate particles immersed in a continuous phase is known as a sol. One can also have a case where only two dimensions (e.g., the height z and breadth y of a cube) are shrank to colloidal dimensions. The result is long spaghettihke particles dispersed in solution—macromolecular solutions. [Pg.288]

Colloids are also often classified on the basis of the affinity of the surfaces of the particles to the continuous phase. This classification is also ambiguous in some respects, but deserves a brief mention. [Pg.10]

Above we used the words continuous phase and dispersed phase to refer to the medium and to the particles, respectively, in the colloidal size range. It should be understood that these are solvent and solute in lyophilic systems. In micellar systems, the micelles are dispersed in an aqueous continuous phase. Furthermore, the system as a whole is generally called a dispersion when we wish to emphasize the colloidal nature of the dispersed particles. This terminology is by no means universal. Lyophilic dispersions are true solutions and may be called such, although this term ignores the colloidal size of the solute molecules. [Pg.11]

Lyophobic colloids are known by a variety of terms, depending on the nature of the phases involved. Some of these are listed in Table 1.4. Some of the terms (e.g., aerosol, gel) are somewhat ambiguous, so the reader is warned to make certain that the system is fully understood, particularly when the original literature is consulted. Remember that a common feature of all systems we consider is that some characteristic linear dimension of the dispersed particles falls in the range defined in Section 1.1a. When we deal with two-phase colloids in this book, we are primarily concerned with systems in which the dispersed phase is solid and the continuous phase is liquid. [Pg.13]

Emulsions and foams are two other areas in which dynamic and equilibrium film properties play a considerable role. Emulsions are colloidal dispersions in which two immiscible liquids constitute the dispersed and continuous phases. Water is almost always one of the liquids, and amphipathic molecules are usually present as emulsifying agents, components that impart some degree of durability to the preparation. Although we have focused attention on the air-water surface in this chapter, amphipathic molecules behave similarly at oil-water interfaces as well. By their adsorption, such molecules lower the interfacial tension and increase the interfacial viscosity. Emulsifying agents may also be ionic compounds, in which case they impart a charge to the surface, which in turn establishes an ion atmosphere of counterions in the adjacent aqueous phase. These concepts affect the formation and stability of emulsions in various ways ... [Pg.322]


See other pages where Colloids continuous phase is mentioned: [Pg.378]    [Pg.459]    [Pg.378]    [Pg.459]    [Pg.144]    [Pg.175]    [Pg.176]    [Pg.397]    [Pg.754]    [Pg.248]    [Pg.118]    [Pg.118]    [Pg.119]    [Pg.127]    [Pg.360]    [Pg.51]    [Pg.185]    [Pg.320]    [Pg.670]    [Pg.1]    [Pg.2]    [Pg.40]    [Pg.89]    [Pg.216]    [Pg.217]    [Pg.223]    [Pg.7]    [Pg.298]    [Pg.609]    [Pg.171]    [Pg.199]    [Pg.10]    [Pg.26]    [Pg.140]    [Pg.323]   
See also in sourсe #XX -- [ Pg.230 ]




SEARCH



Colloidal phase

© 2024 chempedia.info