Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Colloids, as catalysts

Bonnemann, H. and Braun, G.A., Enantioselectivity control with metal colloids as catalyst, Chem. -Eur. J., 3, 1200, 1997. [Pg.92]

Fig. 12. Schematic functions of a metal colloid as catalyst and microelectrode in the multi-electron reduction of a substrate... Fig. 12. Schematic functions of a metal colloid as catalyst and microelectrode in the multi-electron reduction of a substrate...
Gniewek A, Trzeciak AM, Ziolkowski JJ, Kepinski L, Wrzyszcz J, Tylus W (2005) Pd-PVP colloid as catalyst for Heck and carbonylation reactions TEM and XPS studies. J Catal 229 332... [Pg.414]

Figure 31. Photosynthetic systems for CO2 fixation to methane and other hydrocarbon products using Ru and Os colloids as catalysts (a) C02-fixation through reductive ET quenching of Ru(bpz)j (31) as photosensitizer (b) CO2 fixation by oxidative ET quenching of Ru(bpy)j and application of relays 32-34 as ET mediators. Figure 31. Photosynthetic systems for CO2 fixation to methane and other hydrocarbon products using Ru and Os colloids as catalysts (a) C02-fixation through reductive ET quenching of Ru(bpz)j (31) as photosensitizer (b) CO2 fixation by oxidative ET quenching of Ru(bpy)j and application of relays 32-34 as ET mediators.
In the last few years, a significant amount of research has been carried out on Pd colloids as catalysts for Heck reactions, and the most recent literature is focused on the correlations between the structure of the colloidal catalyst and the catalytic performance [138-141]. Other reactions for which the metal colloids have proven to be useful include hydrosilylations [142], isomerizations [128], and Suzuki reactions [124]. [Pg.633]

The development of Pd colloids as catalyst for C—C coupling reactions is rather recent [5]. The first example was reported by BeUer et al. in 1996 they used preformed Pd coUoids stabihsed by tetra-octylammonium bromide prepared following the Bonneman procedure in the Heck arylation [6]. The colloidal system was effective for the Heck arylation of styrene or butyl acrylate by activated aryl bromides, but showed only moderate to little activity for deactivated aryl bromides and aryl chlorides. To obtain these results, the authors found that the colloidal pre-catalysts must be added slowly to the reaction mixture to avoid the formation of inactive palladium black at the beginning of the reaction. [Pg.305]

By comparison to homogeneous catalysts based on metal complexes, the properties of which can be tuned via the ligands coordinating to the metal center, the scope of reactions and viable substrates is certainly less broad for metal colloids. The strong interest in metal colloids as catalysts which exists nonetheless (beyond the current surge of interest in nanoparticles for their own sake) can be traced to several, partially overlapping, aspects ... [Pg.760]

Polymer colloids as catalyst supports and for metal-complexing... [Pg.269]

Bonnemann H ef a/1996 Nanoscale colloidal metals and alloys stabilized by solvents and surfactants preparation and use as catalyst precursors J. Organometaii. Chem. 520 143... [Pg.2917]

Chemical reduction is used extensively nowadays for the deposition of nickel or copper as the first stage in the electroplating of plastics. The most widely used plastic as a basis for electroplating is acrylonitrile-butadiene-styrene co-polymer (ABS). Immersion of the plastic in a chromic acid-sulphuric acid mixture causes the butadiene particles to be attacked and oxidised, whilst making the material hydrophilic at the same time. The activation process which follows is necessary to enable the subsequent electroless nickel or copper to be deposited, since this will only take place in the presence of certain catalytic metals (especially silver and palladium), which are adsorbed on to the surface of the plastic. The adsorbed metallic film is produced by a prior immersion in a stannous chloride solution, which reduces the palladium or silver ions to the metallic state. The solutions mostly employed are acid palladium chloride or ammoniacal silver nitrate. The etched plastic can also be immersed first in acidified palladium chloride and then in an alkylamine borane, which likewise form metallic palladium catalytic nuclei. Colloidal copper catalysts are of some interest, as they are cheaper and are also claimed to promote better coverage of electroless copper. [Pg.436]

Rh colloids were isolated during the hydrosilylation of trimethy(vinyl)silane with triethoxysilane using RhCl3 in EtOH as pre-catalyst. The colour changes observed during the catalytic reaction (from yellow, to red and black) are due to the formation of colloids as demonstrated by TEM this fact was in agreement with the catalytic activity behaviour observed [14]. [Pg.428]

Nanometer size Pd colloids in block copolymer micelles of polystyrene polyvinylpyridine as catalysts have been used is a novel way by Klingelhofer for Heck reaction of C-C coupling of aryl halides with olefins. [Pg.149]

Conventional colloid chemistry and elaitrochemistry have always been clo ly related with each other, the keywords electrophoresis, double layer theory, and specific adsorption describing typical asp ts of this relationship. In more ro nt times, new aspects have arisen which again bring colloid chemistry into contact with modem developments in electrcolloidal particles as catalysts for electron transfer reactions and as photocatalysts. In fact, the similarity between the reactions that occur on colloidal particles and on compact electrodes has often been emphasized by calling the small particles microelectrodes . [Pg.115]

Colloids of more electronegative metals such as cadmium and thallium also act as catalysts for the reduction of water. In the colloidal solution of such a metal, an appreciable concentration of metal ions is present. The transferred electrons are first used to reduce the metal ions, thus bringing the Fermi potential of the colloidal particles to more negative values. After all the metal ions have been reduced, excess electrons are stored as in the case of silver. [Pg.120]

Ru(bipy)3 formed in this reaction is reduced by the sacrificial electron donor sodium ethylenediaminetetra-acetic acid, EDTA. Cat is the colloidal catalyst. With platinum, the quantum yield of hydrogenation was 9.9 x 10 . The yield for C H hydrogenation was much lower. However, it could substantially be improv l by using a Pt colloid which was covered by palladium This example demonstrates that complex colloidal metal catalysts may have specific actions. Bimetalic alloys of high specific area often can prepared by radiolytic reduction of metal ions 3.44) Reactions of oxidizing radicals with colloidal metals have been investigated less thoroughly. OH radicals react with colloidal platinum to form a thin oxide layer which increases the optical absorbance in the UV and protects the colloid from further radical attack. Complexed halide atoms, such as Cl , Br, and I, also react... [Pg.121]

The following two papers deal mainly with problems in energy conversion, in piarticular, the transformation of irradiation energy into electrical or chemical energy. The present status and future possible developments of photoelectrochemical energy conversion is presented. In a second paper electrochemical developments are connected to colloidal chemistry and the application of colloidal particles as catalysts for electron transfer reactions and as photocatalysts are discussed. [Pg.193]

Schmidt TJ, Noeske M, Gasteiger HA, Behm RJ, Britz P, Boennemann H. 1998a. PtRu alloy colloids as precursors for fuel cell catalysts. J Electrochem Soc 145 925-931. [Pg.563]

Later, Chung et al. successfully developed an intramolecular Pauson-Khand reaction in water without any cosolvent by using aqueous colloidal cobalt nanoparticles as catalysts. The catalyst was prepared by reducing an aqueous solution of cobalt acetate containing sodium dode-cyl sulfate (SDS) surfactant. The cobalt nanoparticle could be reused eight times without any loss of catalytic activity (Eq. 4.57).107... [Pg.129]

Finally, the development of modified nanoparticles having better stability and a longer lifetime has involved interesting results in diverse catalytic reactions. Efficient activities are obtained with these transition-metal colloids used as catalysts for the hydrogenation of various unsaturated substrates. Consequently, several recent investigations in total, partial or selective hydrogenation have received significant attention. [Pg.220]

Recently, Liew et al. reported the use of chitosan-stabilized Pt and Pd colloidal particles as catalysts for olefin hydrogenation [51]. The nanocatalysts with a diameter ca. 2 nm were produced from PdCl2 and K2PtCl4 upon reduction with sodium borohydride in the presence of chitosan, a commercial biopolymer, under various molar ratios. These colloids were used for the hydrogenation of oct-1-ene and cyclooctene in methanol at atmospheric pressure and 30 °C. The catalytic activities in term of turnover frequency (TOF mol. product mol. metal-1 h-1)... [Pg.223]

Surfactants are well known as stabilizers in the preparation of metal nanoparticles for catalysis in water. Micelles constitute interesting nanoreactors for the synthesis of controlled-size nanoparticles from metal salts due to the confinement of the particles inside the micelle cores. Aqueous colloidal solutions are then obtained which can be easily used as catalysts. [Pg.226]

Toshima et al. obtained colloidal dispersions of platinum by hydrogen- and photo-reduction of chloroplatinic acid in an aqueous solution in the presence of various types of surfactants such as dodecyltrimethylammonium (DTAC) and sodium dodecylsulfate (SDS) [60]. The nanoparticles produced by hydrogen reduction are bigger and more widely distributed in size than those resulting from the photo-irradiation method. Hydrogenation of vinylacetate was chosen as a catalytic reaction to test the activity of these surfactant-stabilized colloids. The reaction was performed in water under atmospheric pressure of hydrogen at 30 °C. The photo-reduced colloidal platinum catalysts proved to be best in terms of activity, a fact explained by their higher surface area as a consequence of their smaller size. [Pg.227]

Partial hydrogenation of acetylenic compounds bearing a functional group such as a double bond has also been studied in relation to the preparation of important vitamins and fragrances. For example, selective hydrogenation of the triple bond of acetylenic alcohols and the double bond of olefin alcohols (linalol, isophytol) was performed with Pd colloids, as well as with bimetallic nanoparticles Pd/Au, Pd/Pt or Pd/Zn stabilized by a block copolymer (polystyrene-poly-4-vinylpyridine) (Scheme 9.8). The best activity (TOF 49.2 s 1) and selectivity (>99.5%) were obtained in toluene with Pd/Pt bimetallic catalyst due to the influence of the modifying metal [87, 88]. [Pg.239]


See other pages where Colloids, as catalysts is mentioned: [Pg.26]    [Pg.185]    [Pg.197]    [Pg.316]    [Pg.793]    [Pg.523]    [Pg.185]    [Pg.26]    [Pg.185]    [Pg.197]    [Pg.316]    [Pg.793]    [Pg.523]    [Pg.185]    [Pg.234]    [Pg.49]    [Pg.427]    [Pg.427]    [Pg.428]    [Pg.430]    [Pg.431]    [Pg.432]    [Pg.8]    [Pg.1834]    [Pg.258]    [Pg.238]    [Pg.252]    [Pg.342]    [Pg.1396]    [Pg.1613]   
See also in sourсe #XX -- [ Pg.375 ]




SEARCH



Catalyst colloid

Catalyst colloidal

© 2024 chempedia.info