Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cobalt manufacture

Chen Rong et al., High Purity Cobalt Manufacturing , China Journal of Rare Metals, 29(5) (2005), 797-802... [Pg.411]

Henric Kahlmeter returned to Loos and started mining the cobalt ore. Initially the ore was exported as such for making zaffer in other coimtries. After a direct order from governmental authorities domestic color-cobalt manufacturing started near the mine in 1744. [Pg.674]

It was first described in 1608 when it was sublimed out of gum benzoin. It also occurs in many other natural resins. Benzoic acid is manufactured by the air oxidation of toluene in the liquid phase at 150°C and 4-6 atm. in the presence of a cobalt catalyst by the partial decarboxylation of phthalic anhydride in either the liquid or vapour phase in the presence of water by the hydrolysis of benzotrichloride (from the chlorination of toluene) in the presence of zinc chloride at 100°C. [Pg.56]

Manufacture. Furan is produced commercially by decarbonylation of furfural in the presence of a noble metal catalyst (97—100). Nickel or cobalt catalysts have also been reported (101—103) as weU as noncatalytic pyrolysis at high temperature. Furan can also be prepared by decarboxylation of 2-furoic acid this method is usually considered a laboratory procedure. [Pg.81]

Reduction. Hydrogenation of dimethyl adipate over Raney-promoted copper chromite at 200°C and 10 MPa produces 1,6-hexanediol [629-11-8], an important chemical intermediate (32). Promoted cobalt catalysts (33) and nickel catalysts (34) are examples of other patented processes for this reaction. An eadier process, which is no longer in use, for the manufacture of the 1,6-hexanediamine from adipic acid involved hydrogenation of the acid (as its ester) to the diol, followed by ammonolysis to the diamine (35). [Pg.240]

Cobalt difluoride, used primarily for the manufacture of cobalt trifluoride, CoF, is available from Advance Research Chemicals, Inc., Aldrich Chemicals, and PCR in the United States, Fluorochem in the UK, and Schuhardt in Germany. The 1993 price varied from 60 to 200/kg depending on the quantity and the price of cobalt metal. C0F2 is shipped as a corrosive and toxic material in DOT-approved containers. [Pg.178]

Heterogeneous vapor-phase fluorination of a chlorocarbon or chlorohydrocarbon with HP over a supported metal catalyst is an alternative to the hquid phase process. Salts of chromium, nickel, cobalt or iron on an A1P. support are considered viable catalysts in pellet or fluidized powder form. This process can be used to manufacture CPC-11 and CPC-12, but is hampered by the formation of over-fluorinated by-products with Httle to no commercial value. The most effective appHcation for vapor-phase fluorination is where all the halogens are to be replaced by fluorine, as in manufacture of 3,3,3-trifluoropropene [677-21 ] (14) for use in polyfluorosiHcones. [Pg.268]

Reactions. The most important commercial reaction of cyclohexane is its oxidation (ia Hquid phase) with air ia the presence of soluble cobalt catalyst or boric acid to produce cyclohexanol and cyclohexanone (see Hydrocarbon oxidation Cyclohexanoland cyclohexanone). Cyclohexanol is dehydrogenated with 2iac or copper catalysts to cyclohexanone which is used to manufacture caprolactam (qv). [Pg.407]

Oxahc acid is used in various industrial areas, such as textile manufacture and processing, metal surface treatments (qv), leather tanning, cobalt production, and separation and recovery of rare-earth elements. Substantial quantities of oxahc acid are also consumed in the production of agrochemicals, pharmaceuticals, and other chemical derivatives. [Pg.455]

Others. Oxahc acid is used for the production of cobalt, as a raw material of various agrochemicals and pharmaceuticals, for the manufacture of electronic materials (76—83), for the extraction of tungsten from ore (84), for the production of metal catalysts (85,86), as a polymerization initiator (87—89), and for the manufacture of zirconium (90) and beryhium oxide (91). [Pg.462]

Manufacture. The only current U.S. manufacturer of trimesic acid is Amoco Chemical Co. It is produced by oxidation of mesitylene (1,3,5-trimethylbenzene) via the Hquid-phase oxidation in acetic acid using the cobalt— manganese—bromine catalyst system (138). This is a variant of the system used to produce terephthaUc and isophthaUc acids as well as trimellitic anhydride. American Bio-Synthetics Corp. did produce it by batch oxidation of mesitylene with potassium permanganate. [Pg.498]

The predominant process for manufacture of aniline is the catalytic reduction of nitroben2ene [98-95-3] ixh. hydrogen. The reduction is carried out in the vapor phase (50—55) or Hquid phase (56—60). A fixed-bed reactor is commonly used for the vapor-phase process and the reactor is operated under pressure. A number of catalysts have been cited and include copper, copper on siHca, copper oxide, sulfides of nickel, molybdenum, tungsten, and palladium—vanadium on alumina or Htbium—aluminum spinels. Catalysts cited for the Hquid-phase processes include nickel, copper or cobalt supported on a suitable inert carrier, and palladium or platinum or their mixtures supported on carbon. [Pg.231]

The head of the femoral component then articulates with an ion-bombarded, HDPE, high walled, acetabular liner which fits iato a screwed ia, machined, titanium, chromium—cobalt—molybdenum or vanadium—aluminum metallic alloy hydroxyapatite-coated acetabular shell/cup. Each of the separate parts of the modular system for total hip arthroplasty is manufactured ia several different sizes. [Pg.189]

Benzoic Acid. Ben2oic acid is manufactured from toluene by oxidation in the liquid phase using air and a cobalt catalyst. Typical conditions are 308—790 kPa (30—100 psi) and 130—160°C. The cmde product is purified by distillation, crystallization, or both. Yields are generally >90 mol%, and product purity is generally >99%. Kalama Chemical Company, the largest producer, converts about half of its production to phenol, but most producers consider the most economic process for phenol to be peroxidation of cumene. Other uses of benzoic acid are for the manufacture of benzoyl chloride, of plasticizers such as butyl benzoate, and of sodium benzoate for use in preservatives. In Italy, Snia Viscosa uses benzoic acid as raw material for the production of caprolactam, and subsequendy nylon-6, by the sequence shown below. [Pg.191]

Generally, most asphalts are 79—88 wt % C, 7—13 wt % H, trace-8 wt % S, 2—8 wt % O, and trace-3 wt % N (Table 7). Trace metals such as iron, nickel, vanadium, calcium, titanium, magnesium, sodium, cobalt, copper, tin, and 2inc, occur in cmde oils. Vanadium and nickel are bound in organic complexes and, by virtue of the concentration (distillation) process by which asphalt is manufactured, are also found in asphalt. [Pg.368]

Ben2oic acid is almost exclusively manufactured by the cobalt cataly2ed Hquid-phase air oxidation of toluene [108-88-3]. Large-scale plants have been built for ben2oic acid to be used as an intermediate in the production of phenol (by Dow Chemical) and in the production of caprolactam (by Snia Viscosa) (6-11). [Pg.53]

Primary Amyl Alcohols. Primary amyl alcohols (qv) are manufactured by hydroformylation of mixed butenes, followed by dehydrogenation (114). Both 1-butene and 2-butene yield the same product though in slightly different ratios depending on the catalyst and conditions. Some catalyst and conditions produce the alcohols in a single step. By modifying the catalyst, typically a cobalt carbonyl, with phosphoms derivatives, such as tri( -butyl)phosphine, the linear alcohol can be the principal product from 1-butene. [Pg.372]

Hardness (qv), which determines the resistance of a material to abrasion and deformation, is affected not only by composition but also by porosity and microstmcture. Higher cobalt content and larger carbide grain size reduce hardness and abrasion resistance but iacrease the toughness of cemented carbides. The trade-off of abrasion resistance and toughness enables the cemented carbide manufacturer to tailor these materials to a wide variety of metal-cutting and nonmetal-cutting appHcations. [Pg.444]

In the case of ester exchange for the manufacture of poly(ethylene terephthalate), a low molecular weight diester, known as the monomer , is first prepared by reacting 1 mol of dimethyl terephthalate with about 2.1-2.2 mol ethylene glycol at about 150°C in the presence of catalysts such as antimony trioxide and cobaltous acetate ... [Pg.717]


See other pages where Cobalt manufacture is mentioned: [Pg.347]    [Pg.168]    [Pg.178]    [Pg.283]    [Pg.319]    [Pg.118]    [Pg.501]    [Pg.218]    [Pg.303]    [Pg.385]    [Pg.179]    [Pg.12]    [Pg.173]    [Pg.257]    [Pg.176]    [Pg.49]    [Pg.118]    [Pg.220]    [Pg.284]    [Pg.290]    [Pg.71]    [Pg.402]    [Pg.499]    [Pg.52]    [Pg.106]    [Pg.168]    [Pg.372]    [Pg.378]    [Pg.44]    [Pg.1573]    [Pg.590]    [Pg.76]   
See also in sourсe #XX -- [ Pg.677 ]




SEARCH



© 2024 chempedia.info