Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cobalt hydrocarbonyl, reactions olefins

The addition of cobalt hydrocarbonyl to olefins has been investigated and information on the detailed mechanism of the reaction obtained. The reaction of 1-pentene with cobalt hydrocarbonyl to produce a mixture of 1- and 2-pentylcobalt tetracarbonyls was shown to be inhibited by carbon monoxide (46). The inhibition very likely arises because the reactive species is cobalt hydrotricarbonyl rather than the tetracarbonyl. The carbon monoxide, by a mass action effect, reduces the concentration of the reactive species. [Pg.184]

The noncatalytic reaction of cobalt hydrocarbonyl with olefins to produce aldehydes... [Pg.122]

Prior to Takegami s studies, the effect of isomerization of acylcobalt carbonyls on the products of the reaction between cobalt hydrocarbonyl and olefins had received little attention. Terminal olefins had been found to give a mixture of linear and branched products at low temperatures under carbon monoxide, and this was taken as reflecting the mode of addition of cobalt hydrocarbonyl (62, 73, 147). In view of the slow rate of isomerization of acylcobalt carbonyls this seems justified. However, it is worth noting that branched products predominated in the reaction of 1-pentene with hydrocarbonyl under nitrogen even when the olefin had isomerized only to the extent of 50% (73). Both isobutylene and alkyl acrylates had been found to produce branched products. It was suggested that isobutylene, with an... [Pg.125]

Some light has been thrown on this unusual reaction by a study of the reaction of cobalt hydrocarbonyl with olefins under nitrogen (14). It has also be discussed recently by Heck (59). [Pg.135]

Hydroformylation, or the 0X0 process, is the reaction of olefins with CO and H9 to make aldehydes, which may subsequently be converted to higher alcohols. The catalyst base is cobalt naph-thenate, which transforms to cobalt hydrocarbonyl in place. A rhodium complex that is more stable and mnctions at a lower temperature is also used. [Pg.2094]

Cobalt hydrocarbonyl is a very reactive compound. It reacts extremely rapidly with triphenylphosphine, probably by a first-order dissociation mechanism, producing cobalt hydrotricarbonyl triphenylphosphine (44). This demonstrates the very ready replacement of one ligand by another. Cobalt hydrocarbonyl also catalyzes the isomerization of olefins. Under conditions of the hydroformylation reaction, olefin isomerization is observed. But there is controversy as to whether or not rearranged aldehydes (aldehydes which cannot be produced by simple addition to the starting olefin) are produced mainly by rearrangement of an intermediate in the reaction (28, 75, 55) or by reaction of isomerized olefins (55). [Pg.185]

Metal Hydrides. Metal hydrides generally react readily with acetylenes, often by an insertion mechanism. Cobalt hydrocarbonyl gives complicated mixtures of compounds with acetylenes. The only products which have been identified so far are dicobalt hexacarbonyl acetylene complexes (34). Greenfield reports that, under conditions of the hydroformy lation reaction, acetylenes give only small yields of saturated monoaldehydes (30), probably formed by first hydrogenating the acetylene and then reacting with the olefin. Other workers have identified a variety of products from acetylene, carbon monoxide, and an alcohol with a cobalt catalyst, probably cobalt hydrocarbonyl. The major products observed were succinate esters (74,19) and succinate half ester acetals (19). [Pg.193]

Figure D shows some olefin insertion reactions. Hydride additions to olefins have been known for a long while. Among these many examples, manganese hydrocarbonyl, and cobalt hydrocarbonyl, magnesium hydride, diborane, alkylalu-minum hydrides, germanium and tin hydrides all add quite readily to olefins. These last two cases are questionable because the mechanism is not clear. Some of these additions occur without a catalyst some are speeded up by ultraviolet light some are catalyzed by Group VIII metals. So it is not clear whether all these reactions are the same or whether there are several different mechanisms. Figure D shows some olefin insertion reactions. Hydride additions to olefins have been known for a long while. Among these many examples, manganese hydrocarbonyl, and cobalt hydrocarbonyl, magnesium hydride, diborane, alkylalu-minum hydrides, germanium and tin hydrides all add quite readily to olefins. These last two cases are questionable because the mechanism is not clear. Some of these additions occur without a catalyst some are speeded up by ultraviolet light some are catalyzed by Group VIII metals. So it is not clear whether all these reactions are the same or whether there are several different mechanisms.
Figure F shows some acetylene insertion reactions. These, too, are similar to the olefin insertion reactions. The manganese and cobalt hydrocarbonyls again add. Chloronickelcarbonyl hydride, which I believe is an intermediate in many of the nickel carbonyl-catalyzed reactions, adds to olefins. Diborane and the aluminum hydrides also add. Figure F shows some acetylene insertion reactions. These, too, are similar to the olefin insertion reactions. The manganese and cobalt hydrocarbonyls again add. Chloronickelcarbonyl hydride, which I believe is an intermediate in many of the nickel carbonyl-catalyzed reactions, adds to olefins. Diborane and the aluminum hydrides also add.
The mechanism most consistent with all the data is an ionic acid opening of the epoxide —apparently where the hydrocarbonyl is used as an acid to attack the epoxide— which is more sensitive to steric effects than to electronic factors. This conclusion may at first appear to be inconsistent with our previous finding that isobutylene reacted with cobalt hydrocarbonyl to give exclusively addition of the cobalt to the tertiary position. The inhibitory effect of carbon monoxide on that reaction, however, indicated that it was probably cobalt hydrotricarbonyl that was actually adding to the olefin and steric effects would be expected to be much less important with the tricarbonyl than with the tetracarbonyl (7) Apparently he feels now that the former reactions really involve the tricarbonyl, loss of CO being important to get the reaction running whereas epoxide attack perhaps involves a tetracarbonyl, steric factors are more important here. [Pg.212]

Despite very extensive studies on this reaction, there is still considerable uncertainty about its mechanism. The reaction occurs at about the same rate in a wide variety of organic solvents, including benzene, heptane, and alcohol, suggesting that polar intermediates are not involved (Wender et al., 41). Reaction of the olefin with preformed cobalt hydrocarbonyl also gives the aldehyde product (Wender et al., 4 ). This, together with the observation that cobalt hydrocarbonyl is formed under hydroformylation conditions in the absence of olefin, but cannot be detected in the presence... [Pg.318]

It should be noted that the Natta-Martin mechanism, while satisfactory from the kinetic standpoint, does not assign any role in the reaction to cobalt hydrocarbonyl. Hence, it is not readily reconciled with the evidence for the formation of the latter under hydroformylation conditions and its known reactions with olefins (Kirch and Orchin, 43). [Pg.320]

When a large excess of olefin was used, the cobalt hydrocarbonyl was completely used up in Eq. (2), and Eq. (3) did not occur. In this case the products have been recovered as the triphenylphosphine derivatives, or as the esters by reaction of the acylcobalt carbonyls with iodine and an alcohol. [Pg.122]

Takegami et al. (147) reexamined the reaction of olefins with cobalt hydrocarbonyl to determine the effect of reaction variables and the possibility of isomerization on the structure of the acylcobalt carbonyls formed. Products were recovered as their ethyl esters as described previously. Additionally, the uptake of carbon monoxide was measured. This is important since the presence of an acylcobalt tricarbonyl can be inferred when the amount of ester produced exceeds the amount of carbon monoxide absorbed. [Pg.126]

A useful study has just been completed by Roos and Orchin (125), who have examined the effect of ligands such as benzonitrile on the stoichiometric hydroformylation of olefins. A variety of such reagents (acetonitrile, anisole) were found to act in a similar manner to carbon monoxide by suppressing the formation of branched products and the isomerization of excess olefin. The yield of aldehyde was also increased by increasing ligand concentration up to 2 moles per mole of cobalt hydrocarbonyl. Benzonitrile was not found to affect the rate of the reaction of cobalt hydrocarbonyl with acylcobalt tetracarbonyl, so the ligand must have affected an earlier step in the reaction sequence. It seems most likely that cobalt hydrocarbonyl reacts with olefin in the presence of benzonitrile to form an acylcobalt tricarbonyl-benzonitrile complex which is reduced more rapidly than the acylcobalt tetracarbonyl. [Pg.136]

However, no evidence in support of this could be found from reactions of silylcobalt carbonyls with an equivalent of cobalt hydrocarbonyl in an olefin. Inclusion of an equivalent of silicon hydride in the latter reaction resulted in the formation of some alkylsilane derived from the silicon moiety of the silylcobalt carbonyl. This result was shown to arise from a facile exchange reaction as in Eq. (76), however. [Pg.152]

It has been observed that rapid isomerization accompanies the cobalt carbonyl-catalyzed hydrosilation of olefins (18). The reaction of equimolar amounts of a trisubstituted silane and dicobalt octacarbonyl has been shown to result in the formation of cobalt hydrocarbonyl (cf. Section IV). A very effective isomerization catalyst may be prepared by treatment of a solution of Co2(CO)8 in olefin ( 0.01 M) with a silicon hydride in sufficient quantity to slightly exceed the cobalt carbonyl concentration. [Pg.154]

One of the most interesting catalytic reactions to be discovered is the so-called oxo reaction. The oxo reaction consists of the catalytic addition of carbon monoxide and hydrogen to olefins to form, primarily, aldehydes possessing one carbon atom more than the original olefin. This hy-droformylation reaction was developed during World War II by Roelen and co-workers (22) in Germany. While they utilized solid Fischer-Tropsch cobalt-thoria catalyst, it became apparent to them that the hydroformylation reaction was probably a homogeneous catalytic process with either dicobalt octaearbonyl or cobalt hydrocarbonyl as the catalyst. [Pg.191]

An application to a considerably more complex reaction is shown in the next example, that of hydroformylation of olefins with a cobalt hydrocarbonyl catalyst. [Pg.125]

Example 6.5. Olefin hydroformylation with phosphine-substituted cobalt hydrocarbonyl catalyst [30], The pathway 6.9 of olefin hydroformylation with the "oxo" catalyst, HCo(CO)4, has been shown in Example 6.2 in Section 6.3. For phosphine-substituted catalysts, HCo(CO)3Ph (Ph = organic phosphine), the pathway olefin — aldehyde is essentially the same. However, these catalysts also promote hydrogenation of aldehyde to alcohol (Examples 7.3 and 7.4) and of olefin to paraffin (Example 7.5). Moreover, straight-chain primary aldehydes under the conditions of the reaction undergo to some extent condensation to aldol, which is subsequently dehydrated and hydrogenated to yield an alcohol of twice the carbon number (e.g., 2-ethyl hexanol from n-butanal see Section 11.2). The entire reaction system is... [Pg.143]

Example 7.6. Olefin hydroformylation with phosphine-substituted cobalt hydrocarbonyl catalyst [7], The overall reaction system of olefin hydroformylation with a phosphine-substituted cobalt hydrocarbonyl catalyst to produce alcohol, paraffin, and a heavy alcohol has been shown in Example 6.5 (Section 6.5) ... [Pg.180]

Example 8.3. Phosphine-substituted cobalt hydrocarbonyls as hydroformylation catalysts. Extensively studied catalyst systems with complex equilibria include phosphine-substituted hydrocarbonyls of cobalt, HCo(CO)3Ph, where Ph stands for a tertiary organic phosphine. They are modifications of the original oxo catalyst, HCo(CO)4. Like the latter, they catalyze the oxo or hydroformylation reaction of olefins to aldehydes one carbon number higher ... [Pg.204]

Example 8.11. Hydrcformylation with phosphine-substituted cobalt hydrocarbonyl catalyst. The phosphine-substituted cobalt hydrocarbonyl catalyst used for hydro-formylation of olefins has been described in Section 8.2 (see network 8.13). The principal reaction... [Pg.243]

The example of the mass-transfer effect in olefin hydroformylation is interesting in still another respect. If a phosphine-substituted cobalt hydrocarbonyl is used as catalyst in combination with 1-olefin as reactant, a very strong burst of reaction ensues at the reactor inlet or at start of a batch reaction (see Example 12.1). [Pg.386]

Olefin isomerization has been widely studied, mainly because it is a convenient tool for unravelling basic mechanisms involved in the interaction of olefins with metal atoms (10). The reaction is catalyzed by cobalt hydrocarbonyl, iron pentacarbonyl, rhodium chloride, palladium chloride, the platinum-tin complex, and by several phosphine complexes a review of this field has recently been published (12). Two types of mechanism have been visualized for this reaction. The first involves the preformation of a metal-hydrogen bond into which the olefin (probably already coordinated) inserts itself with the formation of a (j-bonded alkyl radical. On abstraction of a hydrogen atom from a diflFerent carbon atom, an isomerized olefin results. [Pg.27]

The use of CO containing 3% H2 in the hydroesteriflcation reaction is standard, suggesting that a cobalt hydrocarbonyl is the active catalyst species. The reaction sequence involves olefin insertion into the Co—H bond, (carbonyl insertion) to give an acyl complex and cleavage with alcohol assisted by the pyridine promoter ... [Pg.522]


See other pages where Cobalt hydrocarbonyl, reactions olefins is mentioned: [Pg.319]    [Pg.265]    [Pg.211]    [Pg.127]    [Pg.133]    [Pg.142]    [Pg.149]    [Pg.193]    [Pg.388]    [Pg.371]    [Pg.509]   
See also in sourсe #XX -- [ Pg.244 ]




SEARCH



Cobalt hydrocarbonyl

Cobalt reactions

Hydrocarbonyl

Hydrocarbonylation

Hydrocarbonylation olefin

Hydrocarbonylations

Hydrocarbonyls

Olefin reactions

Olefination reactions

© 2024 chempedia.info