Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cobalt desulfurization

The conversion of CO to CO2 can be conducted in two different ways. In the first, gases leaving the gas scmbber are heated to 260°C and passed over a cobalt—molybdenum catalyst. These catalysts typically contain 3—4% cobalt(II) oxide [1307-96-6] CoO 13—15% molybdenum oxide [1313-27-5] MoO and 76—80% alumina, JSifDy and are offered as 3-mm extmsions, SV about 1000 h . On these catalysts any COS and CS2 are converted to H2S. Operating temperatures are 260—450°C. The gases leaving this shift converter are then scmbbed with a solvent as in the desulfurization step. After the first removal of the acid gases, a second shift step reduces the CO content in the gas to 0.25—0.4%, on a dry gas basis. The catalyst for this step is usually Cu—Zn, which may be protected by a layer of ZnO. [Pg.423]

Catalyst choice is strongly influenced by the nature of the feedstock to be hydrotreated. Thus, whereas nickel-promoted and cobalt—nickel-promoted molybdenum catalysts can be used for desulfurization of certain feedstocks and operating conditions, a cobalt-promoted molybdenum catalyst is generally preferred in this appHcation. For denitrogenation and aromatics saturation, nickel-promoted molybdenum catalysts usually are the better choice. When both desulfurization and denitrogenation of a feedstock are required, the choice of catalyst usually is made so that the more difficult operation is achieved satisfactorily. [Pg.201]

Cobalt—molybdenum alloys are used for the desulfurization of high sulfur bituminous coal, and cobalt—iron alloys in the hydrocracking of cmde oil shale (qv) and in coalhquefaction (6). [Pg.372]

Cobalt in Catalysis. Over 40% of the cobalt in nonmetaUic appHcations is used in catalysis. About 80% of those catalysts are employed in three areas (/) hydrotreating/desulfurization in combination with molybdenum for the oil and gas industry (see Sulfurremoval and recovery) (2) homogeneous catalysts used in the production of terphthaUc acid or dimethylterphthalate (see Phthalic acid and otherbenzene polycarboxylic acids) and (i) the high pressure oxo process for the production of aldehydes (qv) and alcohols (see Alcohols, higher aliphatic Alcohols, polyhydric). There are also several smaller scale uses of cobalt as oxidation and polymerization catalysts (44—46). [Pg.380]

Ammonia production from natural gas includes the following processes desulfurization of the feedstock primary and secondary reforming carbon monoxide shift conversion and removal of carbon dioxide, which can be used for urea manufacture methanation and ammonia synthesis. Catalysts used in the process may include cobalt, molybdenum, nickel, iron oxide/chromium oxide, copper oxide/zinc oxide, and iron. [Pg.64]

Raney cobalt is generally less effective than Raney nickel, but may be of use when the rupture of other bonds must be avoided. The important use of Raney nickel desulfurization for the structure determination of thiophenes and for the determination of the absolute configuration of optically active thiophene and benzene derivatives has been stressed earlier. [Pg.116]

ELCOX A flue-gas desulfurization process in which the sulfur dioxide is oxidized elec-trochemically to sulfuric acid, using an organometallic catalyst (e.g., cobalt phthalocyanine) adsorbed on activated carbon. Developed by the Central Laboratory of Electrochemical Power Sources, Sofia, Bulgaria. [Pg.97]

Litol Also called Houdry-Litol. A process for making benzene by dealkylating other aromatic hydrocarbons. It is a complex process which achieves desulfurization, removal of paraffins and naphthenes, and saturation of unsaturated compounds, in addition to dealkylation. The catalyst contains cobalt and molybdenum. Developed by the Houdiy Process and Chemical Company and Bethlehem Steel Corporation. First installed by the Bethlehem Steel Corporation in 1964. Subsequently used at British Steel s benzole refinery, Teesside, England. [Pg.165]

Figure 14.2 shows that the production of 99% pure hydrogen requires many catalytic processes. The desulfurization section is used to reduce the sulfur content of the natural gas to 0.01 ppm to protect the SMR and WGS catalysts downstream. A supported cobalt-molybdenum catalyst (CoMoS) converts the sulfur compounds into H2S, which is removed by a ZnO catalyst [5]. [Pg.302]

Activated mercaptans undergo desulfurization to hydrocarbons using cobalt carbonyl or triiron dodecacarbonyl as the metal complex, and basic phase transfer conditions (5 ). Acidic phase transfer catalysis has been little investigated, the first example in organometallic chemistry being reported in 1983 (reduction of diarylethylenes)( ). When acidic phase transfer conditions (sodium 4-dodecylcenzenesulfo-nate as the phase transfer catalyst) were used for the desulfurization of mercaptans [Fe3(CO)] 2 the metal complex],... [Pg.9]

Catalytic hydrogenation of thiophene poses a problem since noble metal catalysts are poisoned, and Raney nickel causes desulfurization. Best catalysts proved to be cobalt polysulfide [425], dicobalt octacarbonyl [426], rhenium heptasulfide [5i] and rhenium heptaselenide [54]. The last two require high temperatures (230-260°, 250°) and high pressures (140, 322 atm) and give 70% and 100% of tetrahydrothiophene (thiophane, thiolene), respectively. [Pg.53]

Natural gas feedstock is very dependent of the source location in some cases it has high levels of H2S, CO2 and hydrocarbons. Organic sulfur compounds must be removed because they will irreversibly deactivate both reforming and WGS catalysts. Hence a preliminary feed desulfurization step is necessary. This process consists in a medium-pressure hydrogenation (usually on a cobalt-molybdenum catalyst at 290-370 °C), which reduces sulfur compounds to H2S, followed by H2S separation through ZnO adsorption (at 340-390 °C) or amine absorption [9]. [Pg.289]

The most imporant use of cobalt is in the manufacture of various wear-resistant and superalloys. Its alloys have shown high resistance to corrosion and oxidation at high temperatures. They are used in machine components. Also, certain alloys are used in desulfurization and hquefaction of coal and hydrocracking of crude oil shale. Cobalt catalysts are used in many industrial processes. Several cobalt salts have wide commercial apphcations (see individual salts). Cobalt oxide is used in glass to impart pink or blue color. Radioactive cobalt-60 is used in radiography and sterihzation of food. [Pg.231]

Because of the importance of the promotion effect and because many of the central questions surrounding TMS catalysis are about promotion, it is valuable to review a history of the effect. The first reference to a catalyst based on molybdenum and cobalt sulfides capable of desulfurizing coal oils in the presence of hydrogen was a patent from I. G. Farben Industrie dated May 24, 1928 (5). Before this, M. Pier and his team at BASF (1924-1925)... [Pg.179]

Both of the above approaches employed a metal ion as a template about which the corrin cyclization was performed, but the nickel or cobalt ions could not subsequently be removed. In order to obtain metal-free corrins, a new route was therefore devised (67AG865) which employed the novel principle of sulfide contraction (Scheme 22). Thus the sodium salt of the precorrin (284) (Scheme 23) was transformed into the thiolactam (285), and loose complexation with zinc(II) ions caused cyclization to give (286), which was treated with benzoyl peroxide and acid to give the ring-expanded compound (287). Contraction with TFA/DMF gave the corrins (288) and (289), and the major of these (289) was desulfurized with triphenylphosphine and acid to give (288). Finally, demetallation with TFA gave the required metal-free corrin (290), a source for a whole variety of metal derivatives. [Pg.424]

Sulfides - [CARBON - CARBON BLACiq (Vol 4) - [COALCONVERSION PROCESSES - CLEANING AND DESULFURIZATION] (Vol 6) - [COALCONVERSION PROCESSES - CLEANING AND DESULFURIZATION] (Vol 6) - [COBALT COMPOUNDS] (Vol 6) - [FILLERS] (Vol 10) - [SULFAMIC ACID AND SULFAMATES] (Vol 23) -ocean raw matenal [OCEAN RAW MATERIALS] (Vol 17)... [Pg.943]

Impregnation of cobalt and molybdenum (without sodium) increases largely the isomerizing activity of the catalyst the /3-pinene is then completely converted. The catalysts prepared with sodium molybdate and sodium hydroxide (Co-Mo-Na and Na-Co-Mo-Na) have lower isomerizing activities while their HDS activities are significantly increased. As in the case of alumina supported catalysts the sulfided CoMo phase protected by a double layer of alkaline ions on the carbon support gives the best results in HDS of /3-pinene. The behaviour of this catalyst was examined in desulfurization of the turpentine oil (40% a-pinene, 25% /3-pinene, 25% A -carene and 10% camphene + dipentene + myrcene, 1500 ppm S). The results are recorded in Table 6. [Pg.207]

The cobalt-molybdenum combination was also investigated later by the Union Oil Company for the desulfurization of petroleum fractions (29). It was found that, for a bentonite-supported catalyst, cobalt oxide... [Pg.274]


See other pages where Cobalt desulfurization is mentioned: [Pg.518]    [Pg.410]    [Pg.224]    [Pg.301]    [Pg.6]    [Pg.180]    [Pg.54]    [Pg.78]    [Pg.55]    [Pg.107]    [Pg.97]    [Pg.320]    [Pg.234]    [Pg.132]    [Pg.218]    [Pg.218]    [Pg.227]    [Pg.397]    [Pg.423]    [Pg.211]    [Pg.440]    [Pg.774]    [Pg.301]    [Pg.247]    [Pg.1040]    [Pg.201]    [Pg.1018]    [Pg.197]    [Pg.394]   
See also in sourсe #XX -- [ Pg.968 ]




SEARCH



Cobalt molybdate desulfurization

© 2024 chempedia.info