Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cobalt complexes reduction

Mixed TBACIO4 (0.1 M)/Co(tpy)2(PF6)2 (0.5 mM) (tpy = terpyridine) electrolytes have also been studied [145,147]. Both the first film reduction and the cobalt complex reduction occur at the same potential in TBACIO4 electrolyte. In the presence of 0.5 mM Co(tpy)2(PF6)2, a new reoxidation peak appears at... [Pg.397]

Only a few other cobalt complexes of the type covered in this review (and therefore excluding, for example, the cobalt carbonyls) have been reported to act as catalysts for homogeneous hydrogenation. The complex Co(DMG)2 will catalyze the hydrogenation of benzil (PhCOCOPh) to benzoin (PhCHOHCOPh). When this reaction is carried out in the presence of quinine, the product shows optical activity. The degree of optical purity varies with the nature of the solvent and reaches a maximum of 61.5% in benzene. It was concluded that asymmetric synthesis occurred via the formation of an organocobalt complex in which quinine was coordinated in the trans position (133). Both Co(DMG)2 and cobalamin-cobalt(II) in methanol will catalyze the following reductive methylations ... [Pg.437]

Many of these cobalt complexes will catalyze the reduction of organic compounds by borohydride, hydrazine, thiols, etc. Cobalt cyanide complexes will catalyze the reduction of a,j8-unsaturated acids by borohydride (105) DMG complexes the reduction of butadiene and isoprene by borohydride, but not by H2 (124) Co(II) salen, the reduction of CHCI3 and CH3CCI3 to the dichloro compounds by borohydride (116) and cyanocobalamin, the selective reduction of -CCI2- by borohydride to -CHCl- in compounds such as aldrin, isodrin, dieldrin, and endrin without... [Pg.437]

The mechanism of [3 + 2] reductive cycloadditions clearly is more complex than other aldehyde/alkyne couplings since additional bonds are formed in the process. The catalytic reductive [3 + 2] cycloaddition process likely proceeds via the intermediacy of metallacycle 29, followed by enolate protonation to afford vinyl nickel species 30, alkenyl addition to the aldehyde to afford nickel alkoxide 31, and reduction of the Ni(II) alkoxide 31 back to the catalytically active Ni(0) species by Et3B (Scheme 23). In an intramolecular case, metallacycle 29 was isolated, fully characterized, and illustrated to undergo [3 + 2] reductive cycloaddition upon exposure to methanol [45]. Related pathways have recently been described involving cobalt-catalyzed reductive cyclo additions of enones and allenes [46], suggesting that this novel mechanism may be general for a variety of metals and substrate combinations. [Pg.27]

Bis(aryl)cobalt(II) compounds have been prepared by reaction of R MgX (where R = C6H6 Cl n = 2-4) with Co(PR3)2Cl2.203 They undergo both thermally and oxidatively induced decomposition, with the corresponding biphenyl a product. The reactions of alkyl-cobalt complexes have been reviewed recently, and include thermolysis, photolysis, oxidation, and reduction reactions.25 Homolysis of the Co—C bond is a feature of reactions. [Pg.21]

Reduction of low-spin Fe(m) imide 165 with hydrogen (1 atm, 20 °C) proceeds stepwise leading first to anilido complex 168 and then to 77-cyclohexadienyl complex 169 via hydrogenolysis of the Fe=NR linkage (Scheme 64). It should be mentioned that the similar low-spin cobalt complex [PhB(CH2PPh2)3]Co N-/>-Tol is stable to hydrogen pressure (1-3 atm) up to 70 °C <2004JA4538>. [Pg.624]

The reaction of cobaltocene with organoboron dihalides RBX2 (R = Me, Ph and X = Cl, Br mainly) and boron trihalides (BC13, BBr3) leads essentially to three types of (boratabenzene) cobalt complexes, 19,20, and 21 (7,57). CoCp2 plays a dual role in part it acts as a reductant, in part it... [Pg.210]

Alkali metal boratabenzenes may be liberated from bis (boratabenzene) cobalt complexes 7 and 13 by reductive degradation with elemental Li, sodium amalgam, or Na/K alloy (60), or alternatively by degradation with cyanides (61). The latter method has been developed in detail (Scheme 4). It produces spectroscopically pure ( H-NMR control) solutions of the products 26 the excess alkali metal cyanide and the undefined cyanocobalt compounds produced are essentially insoluble in acetonitrile. [Pg.218]

A number of metal porphyrins have been examined as electrocatalysts for H20 reduction to H2. Cobalt complexes of water soluble masri-tetrakis(7V-methylpyridinium-4-yl)porphyrin chloride, meso-tetrakis(4-pyridyl)porphyrin, and mam-tetrakis(A,A,A-trimethylamlinium-4-yl)porphyrin chloride have been shown to catalyze H2 production via controlled potential electrolysis at relatively low overpotential (—0.95 V vs. SCE at Hg pool in 0.1 M in fluoroacetic acid), with nearly 100% current efficiency.12 Since the electrode kinetics appeared to be dominated by porphyrin adsorption at the electrode surface, H2-evolution catalysts have been examined at Co-porphyrin films on electrode surfaces.13,14 These catalytic systems appeared to be limited by slow electron transfer or poor stability.13 However, CoTPP incorporated into a Nafion membrane coated on a Pt electrode shows high activity for H2 production, and the catalysis takes place at the theoretical potential of H+/H2.14... [Pg.474]

The study just described is in accordance with the observation that electrochemical reduction of the (highly conjugated) phthalocyanine (5) complex of Mn(n) also gives no evidence for the formation of a Mn(i) species (in contrast to the corresponding iron and cobalt complexes which, on reduction, yield Fe(i) and Co(i) products) (Lever, Minor Wilshire, 1981). [Pg.219]

Since cobalt on kieselguhr in one of the original Fischer-Tropsch catalysts (1-9), it appeared attractive to investigate the catalytic activity of cobalt complexes immobilized on polystyrene. Although there are many supported cobalt-based Fischer-Tropsch catalysts known (see, for example, references 18-21), no polystyrene-bound systems had been reported. During the course of our work 18% (22,60,61) and 20% (23) crosslinked analogs of CpCo(C0)2 were shown to exhibit limited catalytic activity but no CO reduction. A preliminary disclosure of our work has appeared (2)4). [Pg.167]

A mechanism was proposed in which entry into the catalytic cycle is achieved via Et2AlCl-mediated cobalt hydride generation. Diene hydrometallation affords the cobalt-complexed -jr-allyl A-5, which inserts the tethered alkene to furnish intermediate B-4. Elimination of LnCoOBn provides the cyclization product. Reduction of LnCoOBn by Et2AlCl regenerates cobalt hydride to complete the catalytic cycle (Scheme 17). [Pg.502]

A cobalt complex containing this type of ligand is effective in the sodium borohydride-mediated enantioselective reduction of a variety of a,/ -unsaturated carboxylates. As can be seen from Scheme 6-8, in the presence of a catalytic amount of a complex formed in situ from C0CI2 and chiral ligand 11, reduction proceeds smoothly, giving product with up to 96% ee. The chiral ligand can easily be recovered by treating the reaction mixture with acetic acid. [Pg.342]

The sorption processes for cobalt complexes can be complicated by hydrolysis reactions of the complex in solution, surface induced ligand loss processes, sorption of hydrolysis products of either amine, protonated amine, or mixed amine/aquo cobalt complexes, and oxidation/reduction processes associated with cobalt. The principal objective of the XPS studies was to evaluate, the chemical state of cobalt and amine ligands, the surface concentration of the respective elements, and the ligand to cobalt ratio as indicated by the surface nitrogen to cobalt atomic ratio. [Pg.508]

The cobalt mediated homo Diels-Alder reaction of norbomadiene (560) with phenyl acetylene (568a), affording a phenyl substituted deltacyclene, demonstrated the potential of low-valent cobalt complexes as catalysts332. Lautens and coworkers327 extended the scope of this reaction and were able to synthesize a wide range of substituted deltacyclenes from alkynes 568 (equation 164, Table 33). The low-valent cobalt or cobalt(O) species to be used was prepared in situ by reduction of Co(acac)3 with Et2AlCl. Monosubstituted... [Pg.458]

DR. DAVID STANBURY (Rice University) With regard to the problem of the electrocatalytic reduction of oxygen, I have attempted to formalize some ideas regarding the constraints of thermodynamics in order to elucidate the probable character of cobalt complexes which may catalyze the oxygen electrode via binuclear peroxo-bridged intermediates. The following gross mechanism is presupposed ... [Pg.437]

A desymmetrizing reduction of a dicarbonyl has also been achieved as a route to flMfi-aldol adducts. Yamada and coworkers have shown that a chiral cobalt complex catalyzes the desymmetrization of diaryl-1,3-diketones in excellent yield and enantioselectivity, greatly favoring the anti isomer [Eq. (10.65)]. Anti selectivity is rationalized using a Felkin-Anh model ... [Pg.307]

Cobalt complexes with square planar tetradentate ligands, including salen, cor-rin, and porphyrin types, all catalyse the reduction of alkyl bromides and iodides. Most preparative and mechanistic work with these reactions has used cobalamines, including vitamin-B,. A generalised catalytic cycle is depicted in Scheme 4.10 [219]. At potentials around -0.9 V vs. see, the parent ligated Co(lll) compound un-... [Pg.143]

The overall response to the reaction variables is very similar in the carbonylation and reductive carbonylation reactions. This may indicate similar catalysts and reaction mechanisms. In the carbonylation reaction Co(CO) " was identified by its characteristic CO stretching frequency ( v(CO) r 1890 cm" as the dominant species present in high pressure infrared experiments carried out at 170 °C and 5000 psig. Similar results were obtained in the reductive carbonylation of methanol. It is known that Co(CO) " rapidly reacts with CH I to yield CH C(0)Co(C0) (J9) however, in the carbonylation and reductive carbonylation reactions acyl-cobalt complexes are not observed by infrared under catalytic conditions. This indicates that once formed, the acyl complex rapidly reacts as outlined by Equations 7 and 8. [Pg.128]

Table 1 lists some of the binding constants and rate constants measured for the reaction of CO2 with redox-active molecules. Various techniques have been used to measure these constants including cyclic voltammetry, pulsed radiolysis, and bulk electrolysis followed by UV-visible spectral measurements. The binding constants span an enormous range from less than 1 to 10 M [13-17]. Co(I) and Ni(I) macrocyclic complexes have been studied in some detail [13-16]. For the cobalt complexes, the CO2 binding constants K) and second-order rate constants for CO2 binding (kf) are largely determined by the Co(II/I) reduction potentials... [Pg.204]

In this section, we present material dealing with the direct oxidation and reduction of a variety of organocobalt species, including complexes with more than one cobalt center, electrodes functionalized with cobalt complexes, cobalt-containing SchifF-base complexes, cobalt porphyrins and corroles, and macrocyclic tetraamines. [Pg.536]


See other pages where Cobalt complexes reduction is mentioned: [Pg.89]    [Pg.285]    [Pg.387]    [Pg.433]    [Pg.434]    [Pg.27]    [Pg.340]    [Pg.750]    [Pg.458]    [Pg.530]    [Pg.34]    [Pg.600]    [Pg.117]    [Pg.145]    [Pg.153]    [Pg.403]    [Pg.254]    [Pg.305]    [Pg.9]    [Pg.127]    [Pg.28]    [Pg.138]    [Pg.138]    [Pg.213]    [Pg.113]   
See also in sourсe #XX -- [ Pg.24 , Pg.332 ]

See also in sourсe #XX -- [ Pg.646 ]

See also in sourсe #XX -- [ Pg.332 ]

See also in sourсe #XX -- [ Pg.137 ]




SEARCH



Cobalt silyl complexes reductive elimination

Complexes reduction

Complexity reduction

Electron reduction, cobalt complexes

Reduction potentials cobalt complexes

© 2024 chempedia.info