Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cobalt carbonyl carbene complexes

Transition metal complexes which react with diazoalkanes to yield carbene complexes can be catalysts for diazodecomposition (see Section 4.1). In addition to the requirements mentioned above (free coordination site, electrophi-licity), transition metal complexes can catalyze the decomposition of diazoalkanes if the corresponding carbene complexes are capable of transferring the carbene fragment to a substrate with simultaneous regeneration of the original complex. Metal carbonyls of chromium, iron, cobalt, nickel, molybdenum, and tungsten all catalyze the decomposition of diazomethane [493]. Other related catalysts are (CO)5W=C(OMe)Ph [509], [Cp(CO)2Fe(THF)][BF4] [510,511], and (CO)5Cr(COD) [52,512]. These compounds are sufficiently electrophilic to catalyze the decomposition of weakly nucleophilic, acceptor-substituted diazoalkanes. [Pg.91]

The chromium carbonyl linkers 1.40 (98) and 1.41 (99) were prepared from commercial triphenylphospine resin and respectively from pre-formed p-arene chromium carbenes and Fischer chromium amino carbenes. Their SP elaboration is followed by cleavage with pyridine at reflux for 2 h (1.40) and with iodine in DCM for 1 h at rt (1.41) both linkers produce the desired compounds in good yields. A similar cobalt carbonyl linker 1.42 (100) was prepared as a mixmre of mono- (1.42a) and bis- (1.42b) phosphine complex, either from pre-formed alkyne complexes on triphenylphosphine resin or by direct alkyne loading on the bisphosphine cobalt complex traceless cleavage was obtained after SP transformations by aerial oxidation (DCM, O2, hp, 72 h, rt) and modified alkynes were released with good yields and... [Pg.21]

We must however keep in mind that some of the above reactions may not be simple reactions at the silicon atom, since transition metal complexes show multicenter reactivity (metal atom, ligands) as exemplified in the chemistry of triphenylgermyl-carbene complexes of cobalt carbonyl (253). Thus, displacements of a silyl ligand may result from a multistep process and a thorough examination of these reactions has to be made. An example can be drawn from molybdenum-germanium chemistry (247). As shown in Scheme 59, germanium is displaced from complex 167 by HO with retention of configuration. Actually,... [Pg.148]

The reactivity of carbene-metal complexes, amongst others the reactivity with respect to alkenes and alkynes, has been reviewed by Dotz Just like free carbenes the coordinated carbenes add to triple bonds to give cyclopropene derivatives. Other reaction products, however, are also possible. For instance, the carbene ligand of chromium complex 23 reacts with diphenylacetylene to a mixture of products, including naphthalene derivative 24 and furan derivative 25 (equation 18). A carbonyl ligand has participated. Molecular orbital calculations by Hofmann and Hammerle " on this system reveal that the reaction would pass through an y-vinylcarbene type of complex (26) instead of through a planar chromacyclobutene 27. The subsequent steps to yield either phenol or furan could involve vinylketene 28, but this still is a matter of debate. Similar, but more selective, furan syntheses have been observed for carbene complexes based on iron and cobalt. ... [Pg.888]

The heptanuclear iron carbonyl cluster [Fe3(CO)u(/u-H)]2-Fe(DMF)4 (178) acted as an efficient catalyst in the reduction of carboxamides by l,2-bis(dimethylsilyl)benzene in toluene to the corresponding amines in high yields. Several tertiary and secondary amides including a sterically crowded amide were also reduced smoothly A review of the development of optically active cobalt complex catalysts for enan-tioselective synthetic reactions has addressed the applications of ketoiminatocobalt(II) complexes such as (5)-MPAC (179) and (5)-AMAC (180), transition-state models for borohydride reduction, halogen-free reduction by cobalt-carbene complexes. [Pg.162]

Carbonyl insertions into metallocarbenes have previously been observed for several different metals, including iron48 (see Section VI,C) and manganese.49 Indeed, carbonyl insertions into chrominum and tungsten diphenyl-carbenes have been shown to be viable processes.50 Most importantly, Wulff has isolated51 an 774-vinylketenecobalt (I) complex from the reaction between a cobalt carbene and an acetylene, a transformation that necessitates such a carbonyl insertion (see Section V,B). [Pg.284]

O Connor proposed a mechanism involving deinsertion of carbon monoxide from the vinylketene complex 106 to form the new cobaltacyclobutene 109. The cobalt may then undergo a 1,3-shift to the carbonyl of the ester group to create the oxycobaltacycle 110, before deinsertion of the cobalt moiety forms the furan 108. Alternatively, 109 may rearrange to the vinyl-carbene 111, which then undergoes ester-carbonyl attack on the carbene carbon to form the zwitterionic species 112, which finally aromatizes to yield the furan 108. Notice that this latter postulate is identical to the final steps of the mechanism formulated by Wulff (see Section V,B) for the reaction between a cobalt carbene and an alkyne, in which a cobaltacyclobutene is a key intermediate.51... [Pg.302]

The conversion of methanol to ethanol with carbon monoxide and hydrogen has attracted considerable attention. Further carbonylation to higher alcohols occurs much more slowly, but acetic acid formation is a competing reaction and this leads to ester formation. Using CoI2 in presence of PBu 3 as catalyst, the selectivity to ethanol was improved by addition of the borate ion B4072. 399 This was attributed to an enhanced carbene-like nature of an intermediate cobalt-acyl complex by formation of a borate ester (equation 76). This would favour hydrogenolysis to... [Pg.269]

X-ray crystallography amino(l-alkynyl) carbenes, 170 chalcogen-bridged metal-carbonyl complexes, 244-248, 250-253, 255-256, 258-264, 266-272, 274-279, 281, 283-284, 287, 289, 292-293, 295-310 cobalt-alkyne complexes, 76-77, 82-83, 89-90, 94-96... [Pg.321]

The ability of chiral bis(camphorquinone-a-dioximato)cobalt(Il) complexes (Section 1.2.1.2.4.2.6.3.1.) to catalyze carbene transfer from diazocarbonyl compounds (diazoacetic esters, 2-diazo-l-phenylethan-l-one) to terminal alkenes conjugated with vinyl, aryl, carbonyl, and cyano groups, has already been mentioned. The ee-values are 75-88 /o at best, often lower. The highest values are again obtained with bulky diazoacetic esters. The significance of these catalysts, however, is their ability to promote cyclopropanation of electron-deficient alkenes, such as acrylates and acrylonitriles, in contrast to the rhodium and copper catalysts discussed above. [Pg.462]

Given the isoelectronic relationship between [CR] and [NO] and the ubiquity of this latter ligand in the coordination chemistry of later transition metals, the scarcity of mononuclear alkylidyne complexes of metals from groups 8-10 is surprising [1-4]. Isolated examples have been reported for iron [5], cobalt [6], ruthenium [4,7], osmium [4,8-9] and iridium [10]. Most of the examples known employ routes with extensive precedent in early transition metal systems, i.e., either electrophilic attack at the p-atom of a hetero carbonyl (CS [5], CTe [4], or C=CH2 [10]) or the Lewis-acid assisted abstraction of an alkoxide group from a carbene precursor [5] (Scheme 1). The one approach which is, too date, peculiar to group 8 metals involves reduction of a divalent dichlorocarbene complex by lithium aryls [4]. The limitation of this procedure to ruthenium and osmium is presumably not a feature of these metals but rather a result of the present lack of synthetic routes to suitable dihalocarbene precursor complexes of earlier metals. [Pg.239]

Diazo compounds react with cobalt(II)-porphyrins, including [Co (Pl)] to give complexed carbenes (Figure 4.12). These can then undergo carbonylation by addition of carbon monoxide, with in situ capture of the ketenes by nucleophiles, or with imines forming PTactams (Eqn (4.45)). ... [Pg.263]


See other pages where Cobalt carbonyl carbene complexes is mentioned: [Pg.15]    [Pg.13]    [Pg.375]    [Pg.1183]    [Pg.29]    [Pg.485]    [Pg.153]    [Pg.393]    [Pg.161]    [Pg.273]    [Pg.56]    [Pg.145]    [Pg.161]    [Pg.163]    [Pg.162]    [Pg.182]   
See also in sourсe #XX -- [ Pg.338 ]




SEARCH



Carbenes cobalt-complexes

Cobalt carbene complexes

Cobalt carbonyl complexes

Cobalt carbonylation

Cobalt complexes carbonylation

© 2024 chempedia.info