Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cobalt complex catalysts hydroformylation

The switch from the conventional cobalt complex catalyst to a new rhodium-based catalyst represents a technical advance for producing aldehydes by olefin hydroformylation with CO, ie, by the oxo process (qv) (82). A 200 t/yr CSTR pilot plant provided scale-up data for the first industrial,... [Pg.522]

One of the most significant processes that involve CO in organic industrial chemistry is the hydroformylation of alkene, or the 0x0 process, in which rhodium and cobalt complex catalysts are used. Ruthenium is a strong candidate for replacing the very expensive rhodium catalyst. Further, ruthenium complexes are excellent catalysts for the addition of formyl groups of aldehydes, formates and formamides to alkenes. [Pg.277]

New Steroidal derivatives of androstene and pregnene containing an a-amino moiety have been prepared in a one-pot hydroformylation-amidocarbonylation reaction using a rhodium or a rhodium-cobalt complex catalyst [157]. [Pg.189]

An early attempt to hydroformylate butenediol using a cobalt carbonyl catalyst gave tetrahydro-2-furanmethanol (95), presumably by aHybc rearrangement to 3-butene-l,2-diol before hydroformylation. Later, hydroformylation of butenediol diacetate with a rhodium complex as catalyst gave the acetate of 3-formyl-3-buten-l-ol (96). Hydrogenation in such a system gave 2-methyl-1,4-butanediol (97). [Pg.107]

The nickel or cobalt catalyst causes isomerization of the double bond resulting in a mixture of C-19 isomers. The palladium complex catalyst produces only the 9-(10)-carboxystearic acid. The advantage of the hydrocarboxylation over the hydroformylation reaction is it produces the carboxyUc acids in a single step and obviates the oxidation of the aldehydes produced by hydroformylation. [Pg.63]

The catalysts used in hydroformylation are typically organometallic complexes. Cobalt-based catalysts dominated hydroformylation until 1970s thereafter rhodium-based catalysts were commerciahzed. Synthesized aldehydes are typical intermediates for chemical industry [5]. A typical hydroformylation catalyst is modified with a ligand, e.g., tiiphenylphoshine. In recent years, a lot of effort has been put on the ligand chemistry in order to find new ligands for tailored processes [7-9]. In the present study, phosphine-based rhodium catalysts were used for hydroformylation of 1-butene. Despite intensive research on hydroformylation in the last 50 years, both the reaction mechanisms and kinetics are not in the most cases clear. Both associative and dissociative mechanisms have been proposed [5-6]. The discrepancies in mechanistic speculations have also led to a variety of rate equations for hydroformylation processes. [Pg.253]

Most hydroformylation investigations reported since 1960 have involved trialkyl or triarylphosphine complexes of cobalt and, more recently, of rhodium. Infrared studies of phosphine complex catalysts under reaction conditions as well as simple metal carbonyl systems have provided substantial information about the postulated mechanisms. Spectra of a cobalt 1-octene system at 250 atm pressure and 150°C (21) contained absorptions characteristic for the acyl intermediate C8H17COCo(CO)4 (2103 and 2002 cm-1) and Co2(CO)8. The amount of acyl species present under these steady-state conditions increased with a change in the CO/ H2 ratio in the order 3/1 > 1/1 > 1/3. This suggests that for this system under these conditions, hydrogenolysis of the acyl cobalt species is a rate-determining step. [Pg.6]

The introduction of alkyl phosphine complexes of cobalt carbonyl as hydroformylation catalysts was reported to have a significant effect on product composition (50, 51). Slaugh and Mullineaux (52) reported that hexanol with a 91% linear distribution was formed by the hydroformylation of 1-pentene at 150°C, 500 psi, H2/CO 2.0, catalyst [Co2(CO)8 + 2(n-C4H9)3P]. Under the same conditions except at a temperature of 190°C, the n-hexanol was 84% of the hexyl alcohol produced. [Pg.20]

It should be recognized that the stability of cobalt complexes under carbon monoxide can be enhanced by the addition of ligands, as is the case for phosphine-modified cobalt hydroformylation catalysts (57, 58). The stability will also probably depend on properties of the solvent employed. Nevertheless, the plot shown in Fig. 4 appears to be quite useful for assessing long-term cobalt stability under H2/CO in the absence of strongly coordinating solvents or ligands. [Pg.341]

Both the rhodium and the cobalt complexes catalyze olefin isomerization as well as olefin hydroformylation. In the case of the rhodium(I) catalysts, the amount of isomerization decreases as the ligands are altered in the order CO > NR3 > S > PR3. When homogeneous and supported amine-rhodium complexes were compared, it was found that they both gave similar amounts of isomerization, whereas with the tertiary phosphine complexes the supported catalysts gave rather less olefin isomerization than their homogeneous counterparts (44, 45). [Pg.219]

Relatively few hydroformylations using supported cobalt complexes have been reported. Moffat (78, 79) showed that poly-2-vinylpyridine reversibly reacted with both Co2(CO) and HCo(CO)4, the cobalt carbonyl being displaced by excess carbon monoxide. This enabled the polymer to pick up the cobalt carbonyl at the end of the reaction and, thus, allowed it to be separated from the products by filtration. The polymer acted as a catalyst reservoir by rapidly releasing the cobalt carbonyl into solution in the presence of further carbon monoxide, so that the actual catalysis was a homogeneous process. More recently, cobalt carbonyl has been irreversibly bound to a polystyrene resin... [Pg.219]

All Group VIII metals, as well as Mn, Cr, and Cu, exhibit some activity in hydroformylation.6 11 Cobalt, the catalyst in the original discovery, is still used mainly in industry rhodium, introduced later, is one of the most active and studied catalysts. The metal catalysts may be applied as homogeneous soluble complexes, heteroge-nized metal complexes, or supported metals. [Pg.371]

The hydroformylation of conjugated dienes with unmodified cobalt catalysts is slow, since the insertion reaction of the diene generates an tj3-cobalt complex by hydride addition at a terminal carbon (equation 10).5 The stable -cobalt complex does not undergo facile CO insertion. Low yields of a mixture of n- and iso-valeraldehyde are obtained. The use of phosphine-modified rhodium catalysts gives a complex mixture of Cs monoaldehydes (58%) and C6 dialdehydes (42%). A mixture of mono- and di-aldehydes are also obtained from 1,3- and 1,4-cyclohexadienes with a modified rhodium catalyst (equation ll).29 The 3-cyclohexenecarbaldehyde, an intermediate in the hydrocarbonylation of both 1,3- and 1,4-cyclo-hexadiene, is converted in 73% yield, to the same mixture of dialdehydes (cis.trans = 35 65) as is produced from either diene. [Pg.922]

Three commercial homogeneous catalytic processes for the hydroformyla-tion reaction deserve a comparative study. Two of these involve the use of cobalt complexes as catalysts. In the old process a cobalt salt was used. In the modihed current version, a cobalt salt plus a tertiary phosphine are used as the catalyst precursors. The third process uses a rhodium salt with a tertiary phosphine as the catalyst precursor. Ruhrchemie/Rhone-Poulenc, Mitsubishi-Kasei, Union Carbide, and Celanese use the rhodium-based hydroformylation process. The phosphine-modihed cobalt-based system was developed by Shell specih-cally for linear alcohol synthesis (see Section 7.4.1). The old unmodihed cobalt process is of interest mainly for comparison. Some of the process parameters are compared in Table 5.1. [Pg.86]

Scheme 4 shows a platinum catalyst 1 containing such a bis-SPO bidentate ligand anion, designed for the hydroformylation of ethylene and of 1-heptene, and various other, similarly built, platinum catalysts. Catalyst 1 has an activity comparable to that of the commercial cobalt catalysts that were used at the time and displays a higher selectivity for linear products than the cobalt-containing catalysts (66). Like the latter, the platinum complex exhibits hydrogenation activity to give, in part, alcohols in addition to aldehydes and also produces alkanes (an undesired reaction that implies a loss of feedstock). The catalysts are also active for isomerization, as are the cobalt complexes, and for internal heptene hydroformylation (Table 1), with formation of 60% linear products. [Pg.94]

Substituted cobalt carbonyls of the type Co2(CO)6L2 have also been compared to binary cobalt carbonyls as hydroformylation catalysts for linear aldehydes. One study compared four Co2(CO)6L2 complexes (L = tertiary phosphines with functionahzed alkyl groups) to the well-known complexes Co2(CO)6(P n-Bu 3)2 and Co2(CO)g. The bulky phosphine substituent P(CH2CH2CH20CH2CH2)3 showed lower activity than the others, but analogous selectivity. [Pg.845]

An application to a considerably more complex reaction is shown in the next example, that of hydroformylation of olefins with a cobalt hydrocarbonyl catalyst. [Pg.125]

Example 8.3. Phosphine-substituted cobalt hydrocarbonyls as hydroformylation catalysts. Extensively studied catalyst systems with complex equilibria include phosphine-substituted hydrocarbonyls of cobalt, HCo(CO)3Ph, where Ph stands for a tertiary organic phosphine. They are modifications of the original oxo catalyst, HCo(CO)4. Like the latter, they catalyze the oxo or hydroformylation reaction of olefins to aldehydes one carbon number higher ... [Pg.204]

Example 11.1. Hydroformylation of cyclohexene with phosphine-substituted cobalt hydrocarbonyl catalyst. The most probable network of cyclohexene hydroformylation catalyzed by a phosphine-substituted cobalt hydrocarbonyl is shown on the facing page. HCo(CO)3Ph (cat) is in equilibrium with the CO-deficient HCo(CO)2Ph (cat ) and CO. For greater generality, quasi-equilibrium of these species with the 7r-complex, X, is not assumed. Actual hydroformylation olefin — aldehyde proceeds via a Heck-Breslow pathway (cycle 6.9 that includes the trihydride, X2) but without... [Pg.360]


See other pages where Cobalt complex catalysts hydroformylation is mentioned: [Pg.7212]    [Pg.167]    [Pg.99]    [Pg.121]    [Pg.182]    [Pg.204]    [Pg.24]    [Pg.218]    [Pg.76]    [Pg.155]    [Pg.384]    [Pg.19]    [Pg.137]    [Pg.106]    [Pg.114]    [Pg.61]    [Pg.124]    [Pg.328]    [Pg.430]    [Pg.155]    [Pg.10]    [Pg.133]    [Pg.75]    [Pg.668]    [Pg.552]   


SEARCH



Cobalt catalyst

Cobalt catalysts catalyst

Cobalt complex catalysts

Cobalt complex, modified hydroformylation catalyst

Cobalt complex, unmodified hydroformylation catalyst

Cobalt complexes hydroformylation

Hydroformylation cobalt

Hydroformylation cobalt catalysts

© 2024 chempedia.info