Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Clotting cascade

In 1998, the FDA approved fibrin sealant for three specific indications. These include hemostasis at the time of cardiac surgical operations [8] (Fig. 2) as well as at the time of operative procedures to treat splenic trauma. The application of the fibrin sealant which consists of normal biologic components in the body s clotting cascade creates a localized clot which further enhances inherent clotting ability. Although approved for these specific hemostatic indications only, fibrin sealant is useful as a hemostat in a wide variety of off-label clinical situations as well [9,10]. These include such applications as hemostasis for liver trauma or resection [11], vascular anastomoses [12], tonsillectomy [13], peripheral joint replacement [14], dental extractions [15], and bum debridement [16]. [Pg.1113]

FIGURE 18.40 The glutamyl carboxylase reaction is vitamin K-dependent. This enzyme activity is essential for the formation of 7-car-boxyglutamyl residues in several proteins of the blood-clotting cascade (Figure 15.5), accounting for the vitamin K dependence of coagulation. [Pg.607]

Formerly, the clotting cascade had been divided into an extrinsic and intrinsic pathway. Although useful for... [Pg.376]

FXa complexes bind to and neutralize tissue factor/ FVIIa complexes, the key starting point of the extrinsic clotting cascade (see earlier) (Fig. 7). Heparin is able to enhance this reaction by direct binding to the complex and by releasing TFPI from the unaltered vessel wall, which then can access the TF-exposing surface. [Pg.378]

Ionized calcium is an important regulator of a variety of cellular processes, including muscle contraction, stimulus-secretion coupling, the blood clotting cascade, enzyme activity, and membrane excitability. It is also an intracellular messenger of hormone action. [Pg.463]

A number of iron-containing, ascorbate-requiring hydroxylases share a common reaction mechanism in which hydroxylation of the substrate is linked to decarboxylation of a-ketoglutarate (Figure 28-11). Many of these enzymes are involved in the modification of precursor proteins. Proline and lysine hydroxylases are required for the postsynthetic modification of procollagen to collagen, and prohne hydroxylase is also required in formation of osteocalcin and the Clq component of complement. Aspartate P-hydroxylase is required for the postsynthetic modification of the precursor of protein C, the vitamin K-dependent protease which hydrolyzes activated factor V in the blood clotting cascade. TrimethyUysine and y-butyrobetaine hydroxylases are required for the synthesis of carnitine. [Pg.496]

O The cause of an acute coronary syndrome is the rupture of an atherosclerotic plaque with subsequent platelet adherence, activation, and aggregation, and the activation of the clotting cascade. Ultimately, a clot forms composed of fibrin and platelets. [Pg.83]

FIGURE 8-3. The physiologic clotting cascade. Clot formation beginning with vessel or tissue injury. Tissue injury starts the complex process involving clotting factors and resulting in cross-linked fibrin. This is a schematic of the factors and steps involved in the process. [Pg.164]

Anticoagulant Any substance that inhibits, suppresses, or delays the formation of blood clots. These substances occur naturally and regulate the clotting cascade. Several anticoagulants have been identified in a variety of animal tissues and have been commercially developed for therapeutic use. [Pg.1560]

Clotting cascade A series of enzymatic reactions by clotting factors leading to the formation of a blood clot. The clotting cascade is initiated by several thrombogenic substances. Each reaction in the cascade is triggered by the preceding one, and the effect is amplified by positive feedback loops. [Pg.1562]

Clotting factor Plasma proteins found in the blood that are essential to the formation of blood clots clotting factors circulate in inactive forms, but are activated by their predecessor in the clotting cascade or a thrombogenic substance. Each clotting factor is designated by a Roman numeral (e.g., factor VII) and by the letter a when activated (e.g., factor Vila). [Pg.1562]

Thrombin The enzyme formed from prothrombin, which converts fibrinogen to fibrin. It is the principal driving force in the clotting cascade. [Pg.1578]

Activated factor X, along with Ca++ ion, factor V, and PF3 (collectively referred to as the prothrombin activator), catalyzes the conversion of prothrombin into thrombin. Thrombin then catalyzes the conversion of fibrinogen into fibrin, an insoluble, thread-like polymer. The fibrin threads form a meshwork that traps blood cells, platelets, and plasma to form the blood clot. The clotting cascade may be elicited by means of two mechanisms (see Figure 16.1) ... [Pg.236]

The second aspect of biocompatibility is a leaching problem. Ion-selective electrode materials, especially components of solvent polymeric membranes, are subject to leaching upon prolonged contact with physiological media. Membrane components such as plasticizers, ion exchangers and ionophores may activate the clotting cascade or stimulate an immune response. Moreover, they can be potentially toxic when released to the blood stream in significant concentrations. [Pg.127]

Although the final steps of the blood clotting cascade are identical, the initial steps can occur via two distinct pathways extrinsic and intrinsic. Both pathways are initiated when specific clotting proteins make contact with specific surface molecules exposed only upon damage to a blood vessel. Clotting occurs much more rapidly when initiated via the extrinsic pathway. [Pg.330]

Figure 3.1 Principal protein amino acid side-chain metal-ion binding modes (the metal ion represented as a dark filled circle) and (right) the structure of the Ca2+-binding y-carboxyglutamate found in proteins of the blood-clotting cascade. Figure 3.1 Principal protein amino acid side-chain metal-ion binding modes (the metal ion represented as a dark filled circle) and (right) the structure of the Ca2+-binding y-carboxyglutamate found in proteins of the blood-clotting cascade.
The catalytic mechanism of the subtilisins is the same as that of the digestive enzymes trypsin and chymotrypsin as well as that of enzymes in the blood clotting cascade, reproduction and other mammalian enzymes. The enzymes are known as serine proteases due to the serine residue which is crucial for catalysis (Kraut, 1977 and Polgar, 1987)... [Pg.150]

In apoptosis a series of events takes place in an orderly sequence involving the activation of various proteases which are called caspases, for cysteine and aspartate proteases. Several distinct caspases act in a cascade vaguely reminiscent of the blood-clotting cascade of complement proteins. If one wishes to interfere with the apoptotic process, then one strategy would be to develop drugs that inhibit various caspases, a current effort underway in the pharmaceutical industry. [Pg.71]

Fibrinogen, which is a substrate for the clotting cascade in blood, an essential response to tissue damage. [Pg.426]

Such an intermediate is known to be formed in reactions catalyzed by trypsin, chymotrypsin, thrombin, other enzymes of the blood-clotting cascade (except angiotensinconverting enzyme, which is an aspartic protease). An acyl-serine intermediate is also formed in the acetylcholinesterase reaction. The active site serine of this enzyme and the serine proteases can be alkylated by diisopropyl-fluorophosphate. See also Active Site Titration... [Pg.32]

Hemostasis begins with the formation of the platelet plug, followed by activation of the clotting cascade, and propagation of the clot. One of the major multicomponent complexes in the coagulation cascade consists of activated factor IX (factor IXa) as the protease, activated factor VIII (factor Villa), calcium, and phospholipids as the cofactors, and factor X as the substrate. Factor IXa can be generated by either factor Xa activation of the intrinsic pathway or by the tissue factor/factor Vila complex. [Pg.135]

Oral anti-coagulants Thrombolytic (fibrinolytic) drugs Antifibrinolytic agents Antiplatelet drugs CLOTTING CASCADE... [Pg.255]

Endotoxicity results from the interaction of a bacterial cell envelope component (e.g., LPS or PG with a cell surface receptor constituting part of the nonspecific immune system, (i.e., a toll-like receptor on white blood cells). This results in the production of cytokines [e.g., interleukin 1 (IL-1) or tumor necrosis factor (TNF)] as part of an intracellular enzyme cascade which can cause severe tissue injury. Bioassays or immunoassays can be used to detect such reactions respectively. As noted above the most widely used bioassay is the LAL assay. A lysate of amoebo-cytes of the horseshoe crab (Limulus) contains an enzymatic clotting cascade which is activated by extremely low levels of LPS (nanogram levels or lower). There are variants of this assay that can detect PG, but they are not as widely used. As noted above, other bioassays employ cultured cell lines that respond to LPS or PG, respectively. Unfortunately bioassays are highly amenable to false positives (from the presence of cross-reactive substances) or false negatives from inhibition (by contaminants present in the sample) [10]. A detailed discussion of these assays is beyond the scope of this chapter and has been reviewed elsewhere [1]. [Pg.535]

Factor VIII (FVIII) is an essential coagulation factor in the blood which serves as a cofactor in the complex blood-clotting cascade. A deficiency in FVIII is the... [Pg.669]

Complement - A network of proteins known as complement also contribute to the process in a manner somewhat analogous to the blood clotting cascade. The difference is that this cascade destroys nonself. [Pg.186]


See other pages where Clotting cascade is mentioned: [Pg.403]    [Pg.514]    [Pg.376]    [Pg.376]    [Pg.377]    [Pg.602]    [Pg.84]    [Pg.135]    [Pg.136]    [Pg.104]    [Pg.676]    [Pg.28]    [Pg.513]    [Pg.144]    [Pg.236]    [Pg.727]    [Pg.137]    [Pg.429]    [Pg.255]    [Pg.756]    [Pg.539]    [Pg.231]    [Pg.132]   
See also in sourсe #XX -- [ Pg.28 ]

See also in sourсe #XX -- [ Pg.304 , Pg.305 ]




SEARCH



Affect the Clotting Cascade

Blood clot coagulation cascade

Blood clot coagulation cascade pathway

Blood clotting cascade mechanism

Blood-clotting cascade

Clots

Clotting

© 2024 chempedia.info