Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Climate sulfur

Hydrogen Cyanide (cold climate) Sulfur Tri oxide Nitrogen Tetroxide Hydrogen Chloride Bromine Sulfur Dioxide Acrlonitrile 50 1 Km 2.5 Km... [Pg.155]

Pollutants. The problems posed by ak pollutants are very serious. Within a museum, measures can be taken to remove harmful substances as efficiently as possible by means of the installation of appropriate filter systems in the ventilation equipment. Proposed specification values for museum climate-control systems requke filtering systems having an efficiency for particulate removal in the dioctyl phthalate test of 60—80%. Systems must be able to limit both sulfur dioxide and nitrogen dioxide concentrations <10 /ig/m, and ozone to <2 /ig/m. ... [Pg.429]

Other typical pyrotechnic fuels include charcoal, sulfur, boron, siUcon, and synthetic polymers such as poly(vinyl alcohol) and poly(vinyl chloride). Extensive use has been made of natural products such as starches and gums, and the use of these materials continues to be substantial in the fireworks industry. MiUtary pyrotechnics have moved away from the use of natural products due to the inherent variabiUty in these materials depending on climatic conditions during the growth of the plants from which the compounds are derived. [Pg.347]

Sulfur can replace 30-50% of the asphalt in the hlends used for road construction. Road surfaces made from asphalt-sulfur hlends have nearly double the strength of conventional pavement, and it has been claimed that such roads are more resistant to climatic conditions. The impregnation of concrete with molten sulfur is another potential large sulfur use. Concretes impregnated with sulfur have better tensile strength and corrosion resistance than conventional concretes. Sulfur is also used to produce phosphorous pentasulfide, a precursor for zinc dithiophosphates used as corrosion inhibitors. [Pg.116]

Land/atmospheric interfacial processes which impact climate and biological activity on earth are illustrated in Figure 3. Emissions of carbon dioxide, methane, nitrogen dioxide, and chlorofluorocarbons (CFCs) have been linked to the transmission of solar radiation to the surface of the earth as well as to the transmission of terrestrial radiation to space. Should solar radiation be an internal process or an external driver of the hydrologic cycle, weather, and air surface temperatures Compounds of sulfur and nitrogen are associated with acidic precipitation and damage to vegetation, aquatic life, and physical structures. [Pg.11]

Feedbacks may be affected directly by atmospheric CO2, as in the case of possible CO2 fertilization of terrestrial production, or indirectly through the effects of atmospheric CO2 on climate. Furthermore, feedbacks between the carbon cycle and other anthropogenically altered biogeochemical cycles (e.g., nitrogen, phosphorus, and sulfur) may affect atmospheric CO2. If the creation or alteration of feedbacks have strong effects on the magnitudes of carbon cycle fluxes, then projections, made without consideration of these feedbacks and their potential for changing carbon cycle processes, will produce incorrect estimates of future concentrations of atmospheric CO2. [Pg.393]

Fig. 4-13 Calculated and observed annual wet deposition of sulfur in mgS/m per year. (Reprinted from "Atmospheric Environment," Volume 30, Feichter, J., Kjellstrom, E., Rodhe, H., Dentener, F., Lelieveld, and Roelofs, G.-J., Simulation of the tropospheric sulfur cycle in a global climate model, pp. 1693-1707, Copyright 1996, with permission from Elsevier Science.)... Fig. 4-13 Calculated and observed annual wet deposition of sulfur in mgS/m per year. (Reprinted from "Atmospheric Environment," Volume 30, Feichter, J., Kjellstrom, E., Rodhe, H., Dentener, F., Lelieveld, and Roelofs, G.-J., Simulation of the tropospheric sulfur cycle in a global climate model, pp. 1693-1707, Copyright 1996, with permission from Elsevier Science.)...
Just as in the case for the hydrosphere, the atmosphere participates in all of the major biogeochemical cycles (except for phosphorus). In turn, the chemical composition of the atmosphere dictates its physical and optical properties, the latter being of great importance for the heat balance of Earth and its climate. Both major constituents (O2, H2O) and minor ones (CO2, sulfur, nitrogen, and other carbon compounds) are involved in mediating the amounts and characteristics of both incoming solar and outgoing infrared radiation. [Pg.107]

Table 19-1 demonstrates that with the exception of water vapor, all of these cycles have been severely perturbed by human activity. Of course, all of these cycles are also linked in many ways. For example, the combustion of fossil fuel has increased the fluxes of carbon, sulfur, and nitrogen oxides to the atmosphere. Denitrification, the production of N2O, is linked with the production of CO2 during respiration and decay. And of course, other important cycles are involved which are not depicted here. Look back at Fig. 17-8, which sums up the climate forcings by the key agents. [Pg.500]

Charleson RJ, JE Lovelock, MO Andreae, SG Warren (1987) Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature (London) 326 655-661. [Pg.40]

Interest in the possible persistence of aliphatic sulfides has arisen since they are produced in marine anaerobic sediments, and dimethylsulfide may be implicated in climate alteration (Charlson et al. 1987). Dimethylsnlfoniopropionate is produced by marine algae as an osmolyte, and has aronsed attention for several reasons. It can be the source of climatically active dimethylsulfide (Yoch 2002), so the role of specific bacteria has been considered in limiting its flux from the ocean and deflecting the prodncts of its transformation into the microbial sulfur cycle (Howard et al. 2006). [Pg.578]


See other pages where Climate sulfur is mentioned: [Pg.457]    [Pg.201]    [Pg.204]    [Pg.13]    [Pg.31]    [Pg.568]    [Pg.113]    [Pg.361]    [Pg.657]    [Pg.525]    [Pg.11]    [Pg.419]    [Pg.482]    [Pg.51]    [Pg.129]    [Pg.130]    [Pg.280]    [Pg.457]    [Pg.486]    [Pg.487]    [Pg.498]    [Pg.266]    [Pg.149]    [Pg.525]    [Pg.127]    [Pg.75]    [Pg.764]    [Pg.20]    [Pg.22]    [Pg.415]    [Pg.272]   
See also in sourсe #XX -- [ Pg.353 ]




SEARCH



Sulfur climate, global

© 2024 chempedia.info