Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Clays adhesives

Another advantage of these adhesives is that they permit rapid bond formation when applied properly. Tubes and board bound with fully or superhydrolyzed polyvinyl alcohol and clay adhesives also have excellent water resistance, and are used where the box or tube may be exposed to water for an extended period, as is the case with military packages and composite cans or dynamite tubes. [Pg.406]

The paster is a nonheated operation. The most common paster adhesive formulation consists of poly(vinyl alcohol)—clay—starch blends (10). A 100% area adhesive coverage is used. The rate of bond strength development of the adhesive is an important commercial concern and rapid bond formation rates are desirable. [Pg.519]

This stock is discharged from the mixer to equipment that allows cooling and a convenient storage form, such as a mill or an extmder/die plate that yields a sheet or pelletized form. Usually the material is coated with a slurry of clay, calcium carbonate, or zinc stearate to prevent self-adhesion. [Pg.499]

Talc is sold for use in a wide variety of appHcations, including paper (qv), ceramics (qv), roofing, paint (qv), plastics, mbber (qv), cosmetics (qv), pharmaceuticals (qv), adhesives (qv), sealants (qv), and animal feedstuffs (see Feeds and feed additives). In all of these appHcations it is a functional ingredient with specific beneficial properties. Talc is rarely used as a filler because it is much more expensive than alternative minerals such as limestone and clay. [Pg.301]

Adhesives for paper tubes, paperboard, cormgated paperboard, and laminated fiber board are made from dispersions of clays suspended with fully hydrolyzed poly(vinyl alcohol). Addition of boric acid improves wet tack and reduces penetration into porous surfaces (312,313). The tackified grades have higher solution viscosity than unmodified PVA and must be maintained at pH 4.6—4.9 for optimum wet adhesion. [Pg.488]

Adhesives. Clays, especially kaolin and attapulgite, are widely used in various adhesive formulations. Adhesives (qv) containing clays can be derived from natural products such as starch or protein, or be whoUy synthetic, eg, latex, hot melt, emulsion, etc. [Pg.210]

Inks. Refined kaolin is a common ingredient in a large variety of printing inks (qv). In addition to extending the more expensive polymers present, ka olin also contributes to improved color strength, limits the penetration of the ink into the paper, controls rheology, and improves adhesion. Kaolin for this appHcation must usually be as white as possible and free from oversize particles. Surface treated clays are used to improve compatibiHty with oil-based ink. Clays can also be an ingredient in the newer water-based or uv-cured inks. [Pg.210]

Bitumen was used in ancient times as an adhesive for sealing hydraulic structures and as mortar for masonry (5]. The Bible mentions that Noah used pitch for caulking the Ark. Not unlike the Tower of Babylon, the houses of one of the most ancient cities in the world, Mohenjo-Daro in the upper Indus valley, were constructed with bricks of clay and bitumen monar [61. [Pg.2]

One way of improving the adhesion between polymer and filler is to improve the level of wetting of the filler by the polymer. One approach, which has been used for many years, is to coat the filler with an additive that may be considered to have two active parts. One part is compatible with the filler, the other with the polymer. Probably the best known example is the coating of calcium carbonate with stearic acid. Such coated or activated whitings have been used particularly with hydrocarbon rubbers. It is generally believed that the polar end attaches itself to the filler particle whilst the aliphatic hydrocarbon end is compatible with the rubbery matrix. In a similar manner clays have been treated with amines. [Pg.128]

Asbestos may be used for improved heat and chemical resistance and silica, mica and china clay for low water absorption grades. Iron-free mica powder is particularly useful where the best possible electrical insulation characteristics are required but because of the poor adhesion of resin to the mica it is usually used in conjunction with a fibrous material such as asbestos. Organic fillers are commonly used in a weight ratio of 1 1 with the resin and mineral fillers in the ratio 1.5 1. [Pg.647]

To reduce cost. Clay and talc are the most common fillers in rubber adhesives. [Pg.629]

For viscosity or sag control. When the rubber base adhesive is applied on a vertical surface, addition of a filler prevents the adhesive from running down the wall. In solvent-borne formulations, fumed silica can be used as anti-sag filler. In water-borne systems, clays impart yield stress and excellent sag control. [Pg.629]

Another important application of NR is for bonding ceramic tiles, although it needs special compounding with clay filler and cellulose thickener. Water-borne NR adhesives can also be used for bonding canvas and leather shoes and interior trim in some automotive applications. [Pg.650]

Fillers. Fillers are not commonly added to CR adhesives. Calcium carbonate or clay can be primarily added to reduce cost in high-solids CR mastics. Maximum bond strength is obtained using fillers with low particle size (lower than 5 [jim) and intermediate oil absorption (30 g/100 g filler). In general, fillers reduce the specific adhesion and cohesion strength of adhesive films. Although polychloroprene is inherently flame retardant, aluminium trihydrate, zinc borate, antimony trioxide or... [Pg.665]

Fillers. Addition of fillers is not common in polychloroprene latex formulations. Fillers are used to reduce cost and control rheology, solids content and modulus. However, cohesion and adhesion are reduced. Calcium carbonate, clay and silica are some of the fillers than can be added. Alumina trihydrate is often used when resistance to degradation by flame is important. [Pg.669]

Various additives and fillers may be employed. Calcium carbonate, talc, carbon black, titanium dioxide, and wollastonite are commonly used as fillers. Plasticizers are often utilized also. Plasticizers may reduce viscosity and may help adhesion to certain substrates. Thixotropes such as fumed silica, structured clays, precipitated silica, PVC powder, etc. can be added. Adhesion promoters, such as silane coupling agents, may also be used in the formulation [69]. [Pg.797]

Steam from hot sand, adhesive clay bond involved. [Pg.233]

The better interaction observed with the unmodifled clay was also explained in terms of surface energy. The values of surface energy of the fluoroelastomer and the clays, along with work of adhesion, spreading coefficient and interfacial tension are reported in Table 2.4. [Pg.40]

PI nanocomposites have been prepared by various methods with different fillers. The nanocomposites might have many applications starting from barrier and thermal resistance to a compound with low coefficient of thermal expansion (CTE) [154-167]. These hybrid materials show very high thermal and flame retardation as well as barrier resistance and adhesion. Tyan et al. [158] have shown that depending on the structure of the polyimide the properties vary. Chang et al. [159] have also investigated the dependency of the properties on the clay modifiers. [Pg.47]


See other pages where Clays adhesives is mentioned: [Pg.228]    [Pg.2559]    [Pg.228]    [Pg.2559]    [Pg.172]    [Pg.234]    [Pg.362]    [Pg.28]    [Pg.518]    [Pg.9]    [Pg.260]    [Pg.3]    [Pg.469]    [Pg.488]    [Pg.210]    [Pg.18]    [Pg.578]    [Pg.630]    [Pg.632]    [Pg.655]    [Pg.695]    [Pg.1063]    [Pg.440]    [Pg.444]    [Pg.356]    [Pg.25]    [Pg.41]    [Pg.45]    [Pg.49]    [Pg.574]    [Pg.655]   


SEARCH



Synthesis and Structure Characterization of Acrylic-Clay Nanocomposite Pressure-sensitive Adhesives

© 2024 chempedia.info