Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cinchona racemate resolution

Table 13.1 Selected examples of racemate resolution using cinchona alkaloids. [Pg.426]

A solid-phase sulfur oxidation catalyst has been described in which the chiral ligand is structurally related to Schiff-base type compounds (see also below). A 72% ee was found using Ti(OPr-i)4, aqueous H2O2 and solid-supported hgand 91 . More recently, a heterogeneous catalytic system based on WO3, 30% H2O2 and cinchona alkaloids has been reported for the asymmetric oxidation of sulfides to sulfoxides and kinetic resolution of racemic sulfoxides. In this latter case 90% ee was obtained in the presence of 92 as chiral mediator. ... [Pg.1099]

WO3-3O % H2O2-CINCHONA ALKALOIDS A NEW HETEROGENEOUS CATALYTIC SYSTEM FOR ASYMMETRIC OXIDATION OF SULFIDES AND KINETIC RESOLUTION OF RACEMIC SULFOXIDES... [Pg.288]

Chiral sulfoxides have emerged as versatile building blocks and chiral auxiliaries in the asymmetric synthesis of pharmaceutical products. The asymmetric oxidation of prochiral sulfides with chiral metal complexes has become one of the most effective routes to obtain these chiral sulfoxides.We have recently developed a new heterogeneous catalytic system (WO3-30% H2O2) which efficiently catalyzes both the asymmetric oxidation of a variety of thioethers (1) and the kinetic resolution of racemic sulfoxides (3), when used in the presence of cinchona alkaloids such as hydroquinidine 2,5-diphenyl-4,6-pyrimidinediyl diether [(DHQD)2-PYR], Optically active sulfoxides (2) are produced in high yields and with good enantioselectivities (Figure 9.3). ... [Pg.288]

Deng and Tang reported in 2002 that the 5-alkyl l,3-dioxolane-2,4-diones roc-15 shown in Scheme 13.8 undergo kinetic resolution in the presence of alcohols and dimeric cinchona alkaloids such as (DHQD)2AQN 11 [19]. In a first step, the racemic a-hydroxy carboxylic acids roc-14 were reacted with diphosgene to afford the... [Pg.352]

Deng et al. reported in 2001 that a wide variety of N-urethane-protected N-carboxy anhydrides such as, for example, rac-18 shown in Scheme 13.9 undergo kinetic resolution when treated at low temperature with alcohols in the presence of dimeric cinchona alkaloids such as (DHDQ)2AQN, 11 [20], The N-carboxy anhydrides rac-18 were prepared from the racemic amino acids rac-17 by a two-step procedure involving cyclization with diphosgene and subsequent N-protection with, e.g., Cbz or Fmoc. The kinetic resolution of rac-18 proceeded with excellent... [Pg.355]

Scheme 13.9 summarized kinetic resolution of N-urethane protected N-carboxy anhydrides rac-18 by methanolysis in the presence of the dimeric cinchona alkaloid catalyst 11, (DHQD)2AQN, as reported by Deng et al. [20]. These kinetic resolutions were typically conducted at low temperature - from —78 to —60 °C. Deng et al. later observed that if the reaction temperature was increased racemization of the starting aryl N-carboxy anhydrides rac-18 becomes sufficiently rapid to enable a dynamic kinetic resolution [21]. Configurational stability of the product esters... [Pg.360]

Quite remarkable progress has also been achieved in enantioselective transformation of cyclic anhydrides derived from a-hydroxy and a-amino carboxylic acids. By careful choice of the reaction conditions, dynamic kinetic resolution by alcoholysis has become reality for a broad range of substrates. Again, the above mentioned dimeric cinchona alkaloids were the catalysts of choice. In other words, organoca-talytic methods are now available for high-yielding conversion of racemic a-hydroxy and a-amino acids to their enantiomerically pure esters. If desired, the latter esters can be converted back to the parent - but enantiomerically pure - acids by subsequent ester cleavage. [Pg.363]

Substituted aliphatic and aromatic a-keto ethers (Scheme 18.5) are also amenable to enantioselective hydrogenation catalyzed by cinchona-modified Pt catalysts.25 However, as opposed to the prochiral ketones discussed earlier, kinetic resolution is observed for these chiral substrates. At conversions of 20A2%, ee s of 91-98% were obtained when starting with a racemic substrate (see Table 18.5). It is somewhat surprising that a-keto ethers without substituent in the a-position, such as methoxy acetone, reacted very slowly or not at all and led to very low enantioselectivities,6 and from the results described earlier for a-ketoacetals, the same is expected if 2 substituents are present. [Pg.351]

Double Diastereoselection in the Dihydroxylation Reaction. The dihydroxylation reaction of chiral nonracemic substrates using the cinchona-derived ligand leads to a matched and mismatched pair (eq 6) Kinetic resolution of several racemic secondary alcohols has also been examined. ... [Pg.223]

Cinchona-Based Organocatalysts for Desymmetrization of meso-Compounds and (Dynamic) Kinetic Resolution of Racemic Compounds... [Pg.325]

In this chapter, we attempt to review the current state of the art in the applications of cinchona alkaloids and their derivatives as chiral organocatalysts in these research fields. In the first section, the results obtained using the cinchona-catalyzed desymmetrization of different types of weso-compounds, such as weso-cyclic anhydrides, meso-diols, meso-endoperoxides, weso-phospholene derivatives, and prochiral ketones, as depicted in Scheme 11.1, are reviewed. Then, the cinchona-catalyzed (dynamic) kinetic resolution of racemic anhydrides, azlactones and sulfinyl chlorides affording enantioenriched a-hydroxy esters, and N-protected a-amino esters and sulftnates, respectively, is discussed (Schemes 11.2 and 11.3). [Pg.325]

This chapter presented the current stage of development in the desymmetrization of mt >o-com pounds and (dynamic) kinetic resolution of racemic compounds in which cinchona alkaloids or their derivatives are used as organocatalysts. As shown in many of the examples discussed above, cinchona alkaloids and their derivatives effectively promote these reactions by either a monofunctional base (or nucleophile) catalysis or a bifunctional activation mechanism. Especially, the cinchona-catalyzed alcoholytic desymmetrization of cyclic anhydrides has already reached the level of large-scale synthetic practicability and, thus, has already been successfully applied to the synthesis of key intermediates for a variety of industrially interesting biologically active compounds. However, for other reactions, there is still room for improvement... [Pg.354]

Resolution of Racemates and Enantioselective Analytics by Cinchona Alkaloids and Their Derivatives... [Pg.421]


See other pages where Cinchona racemate resolution is mentioned: [Pg.1]    [Pg.421]    [Pg.125]    [Pg.380]    [Pg.198]    [Pg.201]    [Pg.204]    [Pg.402]    [Pg.316]    [Pg.358]    [Pg.363]    [Pg.4]    [Pg.15]    [Pg.95]    [Pg.155]    [Pg.512]    [Pg.189]    [Pg.325]    [Pg.350]    [Pg.352]    [Pg.424]    [Pg.424]   
See also in sourсe #XX -- [ Pg.128 , Pg.426 ]




SEARCH



Cinchona

Cinchona racemic acids resolution

Racemate resolution

Racemic resolution

Racemization resolution

© 2024 chempedia.info