Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cinchona alkaloids methylation

The molecular modelling approach, taking into account the pyruvate—cinchona alkaloid interaction and the steric constraints imposed by the adsorption on the platinum surface, leads to a reasonable explanation for the enantio-differentiation of this system. Although the prediction of the complex formed between the methyl pyruvate and the cinchona modifiers have been made for an ideal case (solvent effects and a quantum description of the interaction with the platinum surface atoms were not considered), this approach proved to be very helpful in the search of new modifiers. The search strategy, which included a systematic reduction of the cinchona alkaloid structure to the essential functional parts and validation of the steric constraints imposed to the interaction complex between modifier and methyl pyruvate by means of molecular modelling, indicated that simple chiral aminoalcohols should be promising substitutes for cinchona alkaloid modifiers. Using the Sharpless symmetric dihydroxylation as a key step, a series of enantiomerically pure 2-hydroxy-2-aryl-ethylamines... [Pg.57]

The hydrogenation of methyl pyruvate proceeded over 4% Pd/Fe20 at 293 K and 10 bar when the catalyst was prepared by reduction at room temperature Racemic product was obtained over utunodified catalyst, modification of the catalyst with a cinchona alkaloid reduced reaction rate and rendered the reaction enantioselective. S-lactate was formed in excess when the modifier was cinchonidine, and R-lactate when the modifier was cinchonine... [Pg.223]

Catalytic asymmetric hydrogenation is a relatively developed process compared to other asymmetric processes practised today. Efforts in this direction have already been made. The first report in this respect is the use of Pd on natural silk for hydrogenating oximes and oxazolones with optical yields of about 36%. Izumi and Sachtler have shown that a Ni catalyst modified with (i ,.R)-tartaric acid can be used for the hydrogenation of methylacetoacetate to methyl-3-hydroxybutyrate. The group of Orito in Japan (1979) and Blaser and co-workers at Ciba-Geigy (1988) have reported the use of a cinchona alkaloid modified Pt/AlaO.i catalyst for the enantioselective hydrogenation of a-keto-esters such as methylpyruvate and ethylpyruvate to optically active (/f)-methylacetate and (7 )-ethylacetate. [Pg.175]

Catalytic enantioselective nucleophilic addition of nitroalkanes to electron-deficient alke-nes is a challenging area in organic synthesis. The use of cinchona alkaloids as chiral catalysts has been studied for many years. Asymmetric induction in the Michael addition of nitroalkanes to enones has been carried out with various chiral bases. Wynberg and coworkers have used various alkaloids and their derivatives, but the enantiomeric excess (ee) is generally low (up to 20%).199 The Michael addition of methyl vinyl ketone to 2-nitrocycloalkanes catalyzed by the cinchona alkaloid cinchonine affords adducts in high yields in up to 60% ee (Eq. 4.137).200... [Pg.118]

R. S. E. Conn, A. V. Lovell, S. Karady, L. M. Weinstock, Chiral Michael Addition Methyl Vinyl Ketone Addition Catalyzed by Cinchona Alkaloid Derivatives , J. Org Chem. 1986, 51, 4710-4711. [Pg.142]

The most successful modifier is cinchonidine and its enantiomer cinchonine, but some work in expanding the repertoire of substrate/modifier/catalyst combinations has been reported (S)-(-)-l-(l-naphthyl)ethylamine or (//)-1 -(I -naphth T)eth Tamine for Pt/alumina [108,231], derivatives of cinchona alkaloid such as 10,11-dihydrocinchonidine [36,71], 2-phenyl-9-deoxy-10, 11-dihydrocinchonidine [55], and O-methyl-cinchonidine for Pt/alumina [133], ephedrine for Pd/alumina [107], (-)-dihydroapovincaminic acid ethyl ester (-)-DHVIN for Pd/TiOz [122], (-)-dihydrovinpocetine for Pt/alumina [42], chiral amines such as 1 -(1 -naphtln I)-2-(I -pyrro 1 idiny 1) ethanol, l-(9-anthracenyl)-2-(l-pyrrolidinyl)ethanol, l-(9-triptycenyl)-2-(l-pyrrol idi nyl)cthanol, (Z )-2-(l-pyrrolidinyl)-l-(l-naphthyl)ethanol for Pt/alumina [37,116], D- and L-histidine and methyl esters of d- and L-tryptophan for Pt/alumina [35], morphine alkaloids [113],... [Pg.511]

Japanese workers (50,51) were the first to observe optical activity in the addition of thiols to electron-poor olefins (eq. [9]) The e.e. was not determined, but these observations led us to attempt using a cinchona alkaloid as the catalyst in the addition of thiophenol to cyclohexenone. The reaction lends itself admirably to a scope, limitations, and mechanism study, and the results have been published in detail (19). An important mechanistic difference between the addition of the dodecanethiol to isopropenyl methyl ketone and the addition of thiophenol to a cyclohexenone (eq. [1]) lies in the sequence of chirality-producing steps. In the former case, chirality is produced when the proton adds to the a-caibon atom of the ketone—after thiol addition has taken place. In the latter... [Pg.99]

Polymer catalysts containing cinchona alkaloids were re-examined by d Angelo for the reaction of l-indanone-2-carboxylate and methyl vinyl ketone, in which the structure of the spacer connecting the base moiety to the Merri-field resin dramatically influenced the enantioselectivity (Scheme 5) [12]. Catalyst 4 (n=7) with a 7-atom-length spacer to quinine exhibits 87% ee, while 4 (n=3) with a 5-atom spacer and 4 ( =9) with an 11-atom spacer gave only 13% and 31% ee, respectively. [Pg.153]

In 1997 the Corey [1] and Lygo [2] groups disclosed the use of N-(anthracenyl)methyl-modified Cinchona alkaloids (e.g., 1) as catalysts in phase transfer alkylations, which afforded remarkable enantiomeric excesses of up to 99%. During the ensuing years, these groups have expanded the scope and limitations of these catalysts, as summarized below. [Pg.161]

Cinchona alkaloids, of course, have occupied the central position in the design of chiral PTCs. By employing a simple chemical transformation of the tertiary amine ofthe natural cinchona alkaloids to the corresponding quaternary ammonium salts, using active halides (e.g., aryl-methyl halides), a basic series of PTCs can be readily prepared. Cinchona alkaloid-derived PTCs have proved their real value in many types of catalytic asymmetric synthesis, including a-alkylation of modified a-amino acids for the synthesis of higher-ordered a-amino acids [2], a-alkylation of... [Pg.49]

Michael additions of C-nudeophiles such as the indanone 1 have been the subject of numerous further studies For example, the reaction between the indanone 1 and methyl vinyl ketone was effected by a solid-phase-bound quinine derivative in 85% yield and with remarkable 87% ee by d Angelo, Cave et al. [5], Co-polymers of cinchona alkaloids with acrylonitrile effected the same transformation Kobaya-shi and Iwai [6a] achieved 92% yield and 42% ee and Oda et al. [6b] achieved almost quantitative yield and up to 65% ee. Similarly, partially resolved 2-(hydroxy-methyl)quinudidine was found to catalyze the reaction between 1 and acrolein and a-isopropyl acrolein with induction of asymmetry, but no enantiomeric excesses were determined [7]. As shown in Scheme 4.4, the indanone 7 could be added to MVK with up to 80% ee under phase-transfer conditions, by use of the Cinchona-derived PT-catalysts 9a and 9b, affording the Michael-product 8 or enf-8, respectively [8]. The adducts 8 or ent-8 were intermediates in the stereoselective Robinson anellation of a cydohexenone ring to the indanone 7 [8],... [Pg.47]

Sutherland, Ibbotson, Moyes and Wells have published a detailed account of the heterogeneous enantioseleetive hydrogenation of methyl pyruvate (CH3COCOOCH3) to R-(+)-methyl lactate over Pt/siliea surfaces modified by sorbed cinchona alkaloids.16 Kinetic, isotherm and molecular modeling calculations were used to develop an idea of the role of the cinchonidine modifier. This system is quite unusual high enantioselectivity is achieved only with Pt, only in the presence of cinchonidine modifiers and only for the hydrogenation of a-ketoesters. [Pg.11]

Further reports on asymmetric synthesis in the presence of Cinchona alkaloids have been made.142 " For example, hydrogenation of methyl pyruvate with a platinum-alumina catalyst containing quinine gives (+)-(/ )-methyl lactate in 87% optical yield.1426 Asymmetric induction with optical yields up to 36 and 26% has been observed in the Michael addition of thiols and nitro-alkanes to ct/ -unsaturated ketones in the presence of quaternary salts derived from the Cinchona alkaloids.142"... [Pg.243]

Other Cinchona Alkaloids Dissolve about 2.5 g of sample in 60 mL of water contained in a separator, add 10 mL of 6 A ammonium hydroxide, extract the mixture successively with 30 mL and 20 mL of chloroform, and evaporate the combined chloroform extracts to dryness on a steam bath. Dissolve 1.5 g of the residue in 25 mL of alcohol dilute the solution with 50 mL of hot water add 1 A sulfuric acid (about 5 mL) until the solution is acid, using 2 drops of methyl red TS as the indicator and neutralize the excess acid with 1 A sodium hydroxide. Evaporate the solution to dryness on a steam bath,... [Pg.380]

In addition to dimethylcuprates, various alternate cuprate reagents can be used. As shown in Scheme 11.12, a divinylcuprate was used in a 1,4-addition employed in the total synthesis of meroquinene 42 (Scheme 11.12), a degradation product of cinchonine and also an intermediate en route to cinchona alkaloids such as quinine [52,53]. As illustrated, enone 36, available via acetoxyglucal 35 (Scheme 11.11), was treated with divinylcuprate to exclusively afford the axially substituted 4-vinyl derivative 38. Trapping of this intermediate with methyl bromoacetate gave a mixture of C3 epimers readily equilibrated to 39 in the presence of triethylamine. Further manipulations of 39 gave the 2-deoxy derivative 40 and, in turn, the dialdehyde 41. Cyclization of the latter to enantiomerically pure meroquinene 42 proceeded uneventfully. [Pg.511]

Undoubtedly, the modification of the structure of the cinchona alkaloid also has a significant effect on its conformational behavior in solution esters [17] and 9-0-carbamoyl derivatives [21] exist as a mixture of two major anti-closed and anti-open conformers, while C9 methyl ethers prefer an anti-closed arrangement in noncoordinating solvents [17]. Here again, protonation provides the anti-open conformation as the sole stable form [16b]. In addition to the solvent polarity, many other factors such as intermolecular interactions are also responsible for the complex conformational behavior of cinchona alkaloids in solution. [Pg.6]


See other pages where Cinchona alkaloids methylation is mentioned: [Pg.435]    [Pg.447]    [Pg.450]    [Pg.457]    [Pg.465]    [Pg.472]    [Pg.911]    [Pg.56]    [Pg.4]    [Pg.69]    [Pg.14]    [Pg.413]    [Pg.147]    [Pg.138]    [Pg.173]    [Pg.6]    [Pg.369]    [Pg.9]    [Pg.147]    [Pg.157]    [Pg.348]    [Pg.510]    [Pg.63]    [Pg.146]    [Pg.146]    [Pg.217]    [Pg.84]    [Pg.328]    [Pg.24]    [Pg.75]    [Pg.330]    [Pg.2]   
See also in sourсe #XX -- [ Pg.338 ]




SEARCH



Cinchona

© 2024 chempedia.info