Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chymotrypsin folding

Anand K, Palm GJ, Mesters JR, SiddeU SG, Ziebuhr J, HUgenfeld R (2002) Structure of coron-avirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-heUcal domain. EMBO J 21 3213-3224... [Pg.103]

Several vital processes rely on clan PA peptidases. Chief among them are blood coagulation and the immune response, which involve cascades of sequential zymogen activation. In both systems, the chymotrypsin-fold peptidase domain is combined with one more associated protein domains, including apple, CUB, EGF, fibronectin, kringle, sushi, and von Willebrand factor domains. These protein domains are on the N-terminus as an extension of the propeptide segment of the peptidase. Such a trend of N-terminal-associated domains in the SIA peptidase family is common across all forms of life. The domain architecture pairs well with the zymogen activation mechanism, which liberates the proper N-terminus to enable catalytic activity. Often, the associated protein domains remain attached to... [Pg.1707]

Chymotrypsin is formed from a precursor molecule called chymotrypsinogen, which has 245 amino acid residues. Cleavage of two dipeptide units of chymotrypsinogen produces chymotrypsin. Chymotrypsin folds in a way that brings together histidine at position 57, aspartic acid at position 102, and serine at position 195. Together, these residues constitute what is called the catalytic triad of the active site (Fig. 24.18). Near the active... [Pg.1094]

Fig. 5. Protein folding. The unfolded polypeptide chain coUapses and assembles to form simple stmctural motifs such as -sheets and a-hehces by nucleation-condensation mechanisms involving the formation of hydrogen bonds and van der Waal s interactions. Small proteins (eg, chymotrypsin inhibitor 2) attain their final (tertiary) stmcture in this way. Larger proteins and multiple protein assembhes aggregate by recognition and docking of multiple domains (eg, -barrels, a-helix bundles), often displaying positive cooperativity. Many noncovalent interactions, including hydrogen bonding, van der Waal s and electrostatic interactions, and the hydrophobic effect are exploited to create the final, compact protein assembly. Further stmctural... Fig. 5. Protein folding. The unfolded polypeptide chain coUapses and assembles to form simple stmctural motifs such as -sheets and a-hehces by nucleation-condensation mechanisms involving the formation of hydrogen bonds and van der Waal s interactions. Small proteins (eg, chymotrypsin inhibitor 2) attain their final (tertiary) stmcture in this way. Larger proteins and multiple protein assembhes aggregate by recognition and docking of multiple domains (eg, -barrels, a-helix bundles), often displaying positive cooperativity. Many noncovalent interactions, including hydrogen bonding, van der Waal s and electrostatic interactions, and the hydrophobic effect are exploited to create the final, compact protein assembly. Further stmctural...
Figure 11.7 Schematic diagram of the structure of chymotrypsin, which is folded into two antiparallel p domains. The six p strands of each domain are red, the side chains of the catalytic triad are dark blue, and the disulfide bridges that join the three polypeptide chains are marked in violet. Chain A (green, residues 1-13) is linked to chain B (blue, residues 16-146) by a disulfide bridge between Cys 1 and Cys 122. Chain B is in turn linked to chain C (yellow, residues 149-245) by a disulfide bridge between Cys 136 and Cys 201. Dotted lines indicate residues 14-15 and 147-148 in the inactive precursor, chmotrypsinogen. These residues are excised during the conversion of chymotrypsinogen to the active enzyme chymotrypsin. Figure 11.7 Schematic diagram of the structure of chymotrypsin, which is folded into two antiparallel p domains. The six p strands of each domain are red, the side chains of the catalytic triad are dark blue, and the disulfide bridges that join the three polypeptide chains are marked in violet. Chain A (green, residues 1-13) is linked to chain B (blue, residues 16-146) by a disulfide bridge between Cys 1 and Cys 122. Chain B is in turn linked to chain C (yellow, residues 149-245) by a disulfide bridge between Cys 136 and Cys 201. Dotted lines indicate residues 14-15 and 147-148 in the inactive precursor, chmotrypsinogen. These residues are excised during the conversion of chymotrypsinogen to the active enzyme chymotrypsin.
Figure 11.8 Topology diagrams of the domain structure of chymotrypsin. The chain is folded into a six-stranded antiparallel p barrel arranged as a Greek key motif followed by a hairpin motif. Figure 11.8 Topology diagrams of the domain structure of chymotrypsin. The chain is folded into a six-stranded antiparallel p barrel arranged as a Greek key motif followed by a hairpin motif.
The active site of subtilisin is outside the carboxy ends of the central p strands analogous to the position of the binding sites in other a/p proteins as discussed in Chapter 4. Details of this active site are surprisingly similar to those of chymotrypsin, in spite of the completely different folds of the two enzymes (Figures 11.14 and 11.9). A catalytic triad is present that comprises residues Asp 32, His 64 and the reactive Ser 221. The negatively charged oxygen atom of the tetrahedral transition state binds in an oxyanion hole,... [Pg.216]

The core protein of alphavirus has a chymotrypsin-like fold... [Pg.340]

Figure 16.21 Structure of one subunit of the core protein of Slndbls virus. The protein has a similar fold to chymotrypsin and other serine proteases, comprising two Greek key motifs separated by an active site cleft. The C-terminus of the protein is bound in the catalytic site, making the coat protein inactive (Adapted from S. Lee et al., Structure 4 531-541, 1996.)... Figure 16.21 Structure of one subunit of the core protein of Slndbls virus. The protein has a similar fold to chymotrypsin and other serine proteases, comprising two Greek key motifs separated by an active site cleft. The C-terminus of the protein is bound in the catalytic site, making the coat protein inactive (Adapted from S. Lee et al., Structure 4 531-541, 1996.)...
A beta barrel is a three-dimensional protein fold motif in which beta strands connected by loops form a barrellike structure. For example, this fold motif is found in many proteins of the immunoglobulin family and of the chymotrypsin family of serine proteases. [Pg.249]

All peptidases within a family will have a similar tertiary structure, and it is not uncommon for peptidases in one family to have a similar structure to peptidases in another family, even though there is no significant sequence similarity. Families of peptidases with similar structures and the same order of active site residues are included in the same clan. A clan name consists of two letters, the first representing the catalytic type as before, but with the extra letter P , and the second assigned sequentially. Unlike families, a clan may contain peptidases of more than one catalytic type. So far this has only been seen for peptidases with protein nucleophiles, and these clans are named with an initial P . Only three such clans are known. Clan PA includes peptidases with a chymotrypsin-like fold, which besides serine peptidases such as chymotrypsin... [Pg.877]

Structural analysis of the rhinovirus and the hepatitis A virus 3C proteases (Allaire et al. 1994 Matthews et al. 1994) confirmed earlier predictions that the picomavirus 3C proteases are similar to chymotrypsin-Uke serine proteases in their fold. An important difference is that the serine nucleophile of serine proteases is replaced with a cysteine however, the 3C protease is stracturally distinct from the eukaryotic cysteine protease class of enzymes. [Pg.100]

Allaire M, Chernaia MM, Malcolm BA, James MN (1994) Picomaviral 3C cysteine proteinases have a fold similar to chymotrypsin-Kke serine proteinases. Nature 369 72-76 Altman MD, Nalivaika EA, Prabu-Jeyabalan M, Schiffer CA, Tidor B (2008) Computational design and experimental study of tighter binding peptides to an inactivated mutant of HIV-1 protease. Proteins 70 678-694... [Pg.103]

NS3 is a 631 amino acid protein, and its first 180 amino acids encode a serine protease of the chymotrypsin family (Figure 2.2A). It has a typical chymotrypsin-family fold consisting of two jS-barrels, with catalytic triad residues at the interface. His-57 and Asp-81 are contributed by the N-terminal jS-barrel and Ser-139 from the C-terminal jS-barrel. NS3 and closely related viral proteases are significantly smaller than other members of the chymotrypsin family, and many of the loops normally found between adjacent jS-strands in trypsin proteases are truncated in NS3 [31]. Probably... [Pg.70]

Pan, Y. P. Daggett, V., Direct comparison of experimental and calculated folding free energies for hydrophobic deletion mutants of chymotrypsin inhibitor. 2 Free energy perturbation calculations using transition and denatured states from molecular dynamics simulations of unfolding, Biochemistry 2001,40, 2723-2731. [Pg.499]

Proteins can be classed into groups based on their overall 3-D shapes, known as protein folds (O Figure 22-la). In general, proteins that have similar functions have similar folds. This means that if you are the proud parent of an unknown protein whose structure is solved, it may be possible to make educated guesses as to the function of the protein based on its overall fold. There are a number of well-known exceptions to this [notably, the serine protease family, subtilisin and trypsin/chymotrypsin (Hartley, 1979)], but the... [Pg.457]

Potl inhibitors differ from other protease inhibitors, and from all other defense peptides mentioned thus far, in their relative lack of disulfide bonds. This means that the loop with the reactive site is not fixed, as it is in the Bowman-Birk inhibitors, yet they still form a stable fold, as shown in Figure 11. An interesting feature of some Potl inhibitors is their tendency to form stable, noncovalently bound oligomers. This has, for example, been shown for chymotrypsin inhibitor I from tomato. This peptide has a monomer weight of 8300 Da under dissociating sodium dodecyl sulfate (SDS) gel conditions. Gel filtration and ultracentrifugal analysis revealed a... [Pg.272]

Despite their lack of stabilizing disulfide bridges Potl inhibitors feature a common, stable fold. The N-terminus is coiled, although in some structures a small /3-strand has been identified. After a turn the structure adopts an a-helical structure, followed by a turn and an other /3-strand. The sequence then features an extended turn or loop motif that contains the reactive site of the inhibitor before it proceeds with a /3-strand running almost parallel to the /3-strand after the a-helix. After another turn and coiled motif a short /3-strand antiparallel to the other /3-strands precedes the coiled C-terminus. Usually the N-terminal residue in the reactive site is an acidic residue followed by an aromatic amino acid, that is, tyrosine or phenylalanine. Figure 11 shows the complex of chymotrypsin inhibitor (Cl) 2 with subtilisin, the hexamer of Cl 2 from H. vulgare and a structural comparison with a trypsin inhibitor from Linum usitatissimum ... [Pg.274]

The peptide (melittin) was foimd associated to RMs in a single state as opposed to involvement of at least two forms of melittin with Upid in phospholipid vesicles. Folding and dynamics of this peptide in RMs were also investigated In RMs, activity of a-chymotrypsin was imaffected by pressurization while lipase lost its activity at low pressures and regained on depressurization. The use of pressure as a switch for lipase catalysis is discussed Partition coefficients for 11 amino acids, 17 dipeptides and 5 longer peptides in RMs were determined. [Pg.170]

Chemical modification of proteins has been extensively studied over the years to identify which amino acids are involved in catalysis. Much less work has been carried out on its influence on enzyme stability. Chemical modification of proteins may yield stabilization, destabilization or no effect at all. Martinek and Berezin (1978) reported the dependence of the thermostability of chymotrypsin on the degree of alkylation of its amino groups up to 30% alkylation the stability rose slightly at 90% substitution stability increased markedly, with a maximum (110-fold) at 95% stability fell to nearly initial values when 100% amino groups were modified. (With these modifications, the optimum pH of the errzyme can change and one must therefore be cautious in comparing two different... [Pg.331]

Based on a suggestion by Odell and Earlam [119] that crown ethers and cryptands can cause proteins to dissolve in methanol, Broos and coworkers [120] investigated the effects of crown ethers on the enzymatic activity of a-chymotrypsin in the transesterification reaction of N-acetyl-L-phenylalanine ethyl ester with n-propanol in organic solvents. They observed a 30-fold rate acceleration when 18-crown-6 was used in octane. At that time, it was proposed that the water- and cation-complexing... [Pg.37]

When 18-crown-6 was co-lyophilized with a-chymotrypsin, a 470-fold activation was seen over the free enzyme in the transesterification of APEE with 1-propanol in cyclohexane (Scheme 3.2) [96]. There was a low apparent specificity for the size and macrocyclic nature of the crown ether additives, suggesting that, during lyophilization, 18-crown-6 protects the overall native conformation and acts as a lyoprotectant. To examine this global effect, FTIR was used to examine the effect of crown ethers on the secondary structure of enzymes. In one study [98], subtilisin Carlsberg was shown to retain its secondary structure in 1,4-dioxane when lyophi-lized in a 1 1 ratio with 18-crown-6. In addition, examination of FTIR spectra from varying incubation temperatures indicated that an increase in crown ether content in the final enzyme preparation resulted in a decreased denaturation temperature in the solvent, indicating a more flexible protein structure. [Pg.61]


See other pages where Chymotrypsin folding is mentioned: [Pg.344]    [Pg.118]    [Pg.176]    [Pg.1707]    [Pg.1707]    [Pg.17]    [Pg.344]    [Pg.118]    [Pg.176]    [Pg.1707]    [Pg.1707]    [Pg.17]    [Pg.417]    [Pg.1286]    [Pg.29]    [Pg.101]    [Pg.359]    [Pg.369]    [Pg.168]    [Pg.60]    [Pg.452]    [Pg.79]    [Pg.40]    [Pg.86]    [Pg.171]    [Pg.85]    [Pg.127]    [Pg.151]    [Pg.350]    [Pg.589]    [Pg.96]    [Pg.32]    [Pg.62]   
See also in sourсe #XX -- [ Pg.499 , Pg.500 ]




SEARCH



Chymotrypsin

Chymotrypsins

© 2024 chempedia.info