Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cholesteric phase thermotropic polymers

To our knowledge, this is the first example of the coexistence of both twisted smectic and cholesteric phases in thermotropic liquid crystal polymers. Previous preparations of thermotropic polymers by the use of chiral derivatives both incorporated in the macromolecular backbone and pendant to it as side chain substituents (comb-like polymers) resulted in either cholesteric or smectic " polymeric products. [Pg.279]

Many cellulose derivatives form lyotropic liquid crystals in suitable solvents and several thermotropic cellulose derivatives have been reported (1-3) Cellulosic liquid crystalline systems reported prior to early 1982 have been tabulated (1). Since then, some new substituted cellulosic derivatives which form thermotropic cholesteric phases have been prepared (4), and much effort has been devoted to investigating the previously-reported systems. Anisotropic solutions of cellulose acetate and triacetate in tri-fluoroacetic acid have attracted the attention of several groups. Chiroptical properties (5,6), refractive index (7), phase boundaries (8), nuclear magnetic resonance spectra (9,10) and differential scanning calorimetry (11,12) have been reported for this system. However, trifluoroacetic acid causes degradation of cellulosic polymers this calls into question some of the physical measurements on these mesophases, because time is required for the mesophase solutions to achieve their equilibrium order. Mixtures of trifluoroacetic acid with chlorinated solvents have been employed to minimize this problem (13), and anisotropic solutions of cellulose acetate and triacetate in other solvents have been examined (14,15). The mesophase formed by (hydroxypropyl)cellulose (HPC) in water (16) is stable and easy to handle, and has thus attracted further attention (10,11,17-19), as has the thermotropic mesophase of HPC (20). Detailed studies of mesophase formation and chain rigidity for HPC in dimethyl acetamide (21) and for the benzoic acid ester of HPC in acetone and benzene (22) have been published. Anisotropic solutions of methylol cellulose in dimethyl sulfoxide (23) and of cellulose in dimethyl acetamide/ LiCl (24) were reported. Cellulose tricarbanilate in methyl ethyl ketone forms a liquid crystalline solution (25) with optical properties which are quite distinct from those of previously reported cholesteric cellulosic mesophases (26). [Pg.370]

Aromatic imide groups are known to be nearly planar, rigid, polar, and thermostable. However, aromatic imide structures are also known to be non-mesogen in nature. Poly(ester-amide) (PEI) derived from N- (4 -carboxyphenyl) trimellitimide and aliphatic spacers are not thermotropic, whether the spacer used is chiral or not. Semi-aliphatic spacers are observed to exhibit both a smectic and a nematic LC phase in the resultant thermotropic PEIs. The semi-aliphatic chiral spacers exhibit both chiral smectic phase (A or C ) and cholesteric phase. Such a chiral smectic LC-phase, which may be ferroelectric in nature, is extremely rare for LC-main-chain polymers [27]. It is a particular advantage of polar imide mesogens to favor the formation of layer-structures when combined with non-polar species [28]. [Pg.278]

Banded texture is generally observed in relaxed polymer liquid crystal solutions or melts after shearing or annealing of the melts of the thermotropic polymer liquid crystal. For the cholesteric liquid crystalline phase of cellulose derivatives in crosslinkable solvents, the banded texture can be fixed by crosslinking. When polymerizable solvents were used for the preparation of cholesteric liquid crystalline composites films, the... [Pg.379]

Huang et al., studied a series of aliphatic esters of HPC-CnPC, where n = 2,3,5, 6, 7, 10. The authors observed that as one increases the number of methylene units in the side-chain of the cholesteric liquid crystal polymers, the window of the thermotropic phase transition narrows (Huang et al. 2007). Although the authors presented a similar study to the one published by Kosho et al. in 1999 (Kosho et al. 1999), wide-angle X-ray diffraction (WAXD) studies permitted to detect that the layer spacing of the cholesteric liquid crystals in this series increases linearly with an increase in the methylene units in the side chains. [Pg.350]

Among the several liquid crystal polymers that have been studied in recent years those containing intrinsically chiral elements with a prevalent chirality hold a particular position. Some of these, in fact, by virtue of their structural characteristics, assume a spatial array with nematic planes stacked in a superhelical structure characterized by a prevalent screw sense and are known as cholesteric phase. This kind of order can be controlled by either concentration in solution (lyotropic systems) or temperature in bulk (thermotropic systems). [Pg.15]

Under certain conditions, stiff rod-like helical polymers can spontaneously form lyotropic or thermotropic cholesteric liquid crystal (TChLC) phases. [Pg.629]

Stiff rod-like helical polymers are expected to spontaneously form a thermotropic cholesteric liquid crystalline (TChLC) phase under specific conditions as well as a lyotropic liquid crystal phase. A certain rod-like poly(f-glutamate) with long alkyl side chains was recently reported to form a TChLC phase in addition to hexagonal columnar and/or smectic phases [97,98]. These properties have already been observed in other organic polymers such as cellulose and aromatic polymers. [Pg.172]

The phase behavior is similar to that of a lower critical solution temperature (LCST), hence it is different from the above systems. The HPC/water system is an interesting model system because of the rich variety of phase structure 01 the material. HPC is a semicrystalline polymer in the solid state (7), but exhibits thermotropic liquid crystalline character at elevated temperatures below the melting point (8). It shows isotropic phase in dilute solutions, but forms an ordered liquid crystalline phase with cholesteric structure in concentrated solutions (4). [Pg.267]

As for low molecular weight surfactants, the superstructures are assumed to be formed by micellar aggregates [126], But it seems that the formation of lyotropic liquid crystals is supported by the additional presence of thermotropic mesogens [87,122-124,126], Lamellar, hexagonal, cubic and even nematic and cholesteric mesophases were reported for binary systems, the latter being exceptional. Lyotropic mesophases were also observed in non-aqueous solvents [240,400,401,405], If polymerizable surfactants are studied, not only the phase diagram but also the types of mesophases observed for the monomer and the polymer may be different. [Pg.50]

Liquid crystals are broadly classified as nematic, cholesteric and smectic (I)- There are at least nine distinct smectic polytypes bearing the rather mundane labels smectic A, B, C,... I, by the chronological order of their discovery. Some of the smectics are actually three-dimensional solids and not distinct liquid-crystal phases at all. There are three t s of liquid crystals. Thermotropic liquid-crystal phases are those observed in pure compounds or homogeneous mixtures as the temperature is changed they are conventionally classified into nematic, cholesteric, and smectic phases in Fig.2. Lyotropic liquid-crystal phases are observed when amphiphilic molecules, such as soaps, are dissolved in a suitable solvent, usually water. Solutions of polymers also exhibit liquid-crystalline order, the polymeric phases. Most of our knowledge about liquid crystals is based on the thermotropic phases and much of this understanding can be transferred to elucidate polymeric and lyotropic phases. [Pg.63]

Although instances of lyotropic PLCs predate studies of thermotropic PLCs, as they involved solutions of comparatively esoteric species — virus particles and helical polypeptides — studies of these liquid crystals were isolated to a few laboratories. Nevertheless, observations on these lyotropic PLCs did stimulate the first convincing theoretical rationalizations of spontaneously ordered fluid phases (see below). Much of the early experimental work was devoted to characterizing the texture of polypeptide solutions. (23) The chiral polypeptides (helical rods) generate a cholesteric structure in the solution the cholesteric pitch is strongly dependent on polymer concentration, dielectric properties of the solvent, and polymer molecular weight. Variable pitch (<1 - 100 pm) may be stabilized and locked into the solid state by (for example) evaporating the solvent in the presence of a nonvolatile plasticizer.(24)... [Pg.70]

The papers presented in this symposium give some indication of the wide variety of polymers which are now known to form liquid crystalline phases Polymeric liquid crystals are usually classified according to the mesophase structure e g., nematic, cholesteric, smectic A, etc ). However, these classes are quite broad For example, the cholesteric lyotropic phases formed by synthetic polypeptides in suitable solvents differ markedly from the cholesteric thermotropic phases formed from silicone polymers with cho-lesteryl ester side chains. In particular, the driving forces behind the formation of the mesophases are quite different for these two examples, being essentially due to chain stiffness in the first case and to anisotropic dispersion force interactions in the second case It may therefore be useful to classify polymeric liquid crystals according to the polymer chain structure ... [Pg.369]

In this chapter we shall only be concerned with electro-optic and thermo-optic switching effects in thermotropic side-chain polymer liquid crystals. We will consider briefly the synthesis and structure of such compounds and show how the nematic, cholesteric and smectic phases arise. Since the optical properties of each of these phases are different, and may be altered depending on alignment within the phase, each gives rise to different electro-optic effects. If these are coupled to the use of dye additives or substituents, then it will be realized that a wide range of electro-optic devices based on dichroism or fluorescence as well as birefringence or scattering power may be fabricated. These will be considered and discussed in terms of their performance and potential applications. Finally, possible uses of polymer-low molar mass liquid crystal solutions will be considered in terms of electro-optic device applications. [Pg.302]

Principles of Preparation and Phase Transitions of Thermotropic Cholesteric Polymers... [Pg.271]

Emoto A, Uchida E, Fukuda T (2012) Optical and physical applications of photocontrollable materials azobenzene-containing and liquid crystalline polymers. Polymers 4 150-186 Ericson LM, Fan H, Peng HQ, Davis VA, Zhou W, Sulpizio J, Wang Y, Booker R, Vavro J, Guthy C et al (2004) Macroscopic, neat, single-walled carbon nanotube fibers. Science 305 1447-1450 Etchegoin P (2000) Blue phases of cholesteric liquid crystals as thermotropic photonic crystals. Phys Rev E 62 1435-1437... [Pg.335]


See other pages where Cholesteric phase thermotropic polymers is mentioned: [Pg.211]    [Pg.197]    [Pg.143]    [Pg.530]    [Pg.127]    [Pg.256]    [Pg.593]    [Pg.271]    [Pg.353]    [Pg.42]    [Pg.694]    [Pg.306]    [Pg.306]    [Pg.185]    [Pg.135]    [Pg.132]    [Pg.144]    [Pg.270]    [Pg.53]    [Pg.146]    [Pg.164]    [Pg.558]    [Pg.562]    [Pg.430]    [Pg.620]    [Pg.808]    [Pg.169]    [Pg.344]    [Pg.364]    [Pg.367]    [Pg.130]   


SEARCH



Cholesteric

Cholesteric phases

Cholesterics

Thermotropic cholesterics

Thermotropic phases

Thermotropic polymers

Thermotropism

© 2024 chempedia.info