Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chlorine chemical properties

Among the non-metals, nitrogen and chlorine, for example, are gases, but phosphorus, which resembles nitrogen chemically, is a solid, as is iodine which chemically resembles chlorine. Clearly we have to consider the physical and chemical properties of the elements and their compounds if we are to establish a meaningful classification. [Pg.1]

Element 104, the first transactinide element, is expected to have chemical properties similar to those of hafnium. It would, for example, form a relatively volatile compound with chlorine (a tetrachloride). [Pg.158]

Chemical Properties and Industrial Uses. Chloroacetic acid has wide appHcations as an industrial chemical intermediate. Both the carboxyhc acid group and the cx-chlorine are very reactive. It readily forms esters and amides, and can undergo a variety of cx-chlorine substitutions. [Pg.88]

Chemical Properties. Under slightly acidic or basic conditions at room temperature, acetate and triacetate fibers are resistant to chlorine bleach at the concentrations normally used in laundering. [Pg.294]

Chemical Properties. A combination of excellent chemical and mechanical properties at elevated temperatures result in high performance service in the chemical processing industry. Teflon PEA resins have been exposed to a variety of organic and inorganic compounds commonly encountered in chemical service (26). They are not attacked by inorganic acids, bases, halogens, metal salt solutions, organic acids, and anhydrides. Aromatic and ahphatic hydrocarbons, alcohols, aldehydes, ketones, ethers, amines, esters, chlorinated compounds, and other polymer solvents have Httle effect. However, like other perfluorinated polymers,they react with alkah metals and elemental fluorine. [Pg.375]

Each isomer has its individual set of physical and chemical properties however, these properties are similar (Table 6). The fundamental chemical reactions for pentanes are sulfonation to form sulfonic acids, chlorination to form chlorides, nitration to form nitropentanes, oxidation to form various compounds, and cracking to form free radicals. Many of these reactions are used to produce intermediates for the manufacture of industrial chemicals. Generally the reactivity increases from a primary to a secondary to a tertiary hydrogen (37). Other properties available but not Hsted are given in equations for heat capacity and viscosity (34), and saturated Hquid density (36). [Pg.403]

Chemical Properties. The chemistry of the sulfur chlorides has been reviewed (141,142). Sulfur monochloride is stable at ambient temperature but undergoes exchange with dissolved sulfur at 100°C, indicating reversible dissociation. When distilled at its atmospheric boiling point, it undergoes some decomposition to the dichloride, but decomposition is avoided with distillation at ca 6.7 kPa (50 mm Hg). At above 300°C, substantial dissociation to S2 and CI2 occurs. Sulfur monochloride is noncombustible at ambient temperature, but at elevated temperatures it decomposes to chlorine and sulfur (137). The sulfur then is capable of burning to sulfur dioxide and a small proportion of sulfur trioxide. [Pg.137]

Chemical Properties. The chemistry of sulfuryl chloride has been reviewed (170,172,195). It is stable at room temperature but readily dissociates to sulfur dioxide and chlorine when heated. The equiUbrium constant has the following values (194) ... [Pg.142]

Chemical Properties. Chloric acid is a strong acid and an oxidising agent. It reacts with metal oxides or hydroxides to form chlorate salts, and it is readily reduced to form chlorine dioxide. [Pg.494]

The physical and chemical properties of chlorinated paraffins are deteanined by the carbon chain length of the paraffin and the chlorine content. This is most readily seen with respect to viscosity (Fig. 1) and volatiUty (Fig. 2) increasing carbon chain length and increasing chlorine content lead to an increase in viscosity but a reduction in volatiUty. [Pg.41]

The compound sodium hydride, formed in reaction (29), is a crystalline compound with physical properties similar to those of sodium chloride. The chemical properties are very different, however. Whereas sodium burns readily in chlorine, it reacts with hydrogen only on heating to about 300°C. While sodium chloride is a stable substance that dissolves in water to form Na+(aqJ and CV(aq), the alkali hydrides bum in air and some of them ignite spontaneously. In contact with water, a vigorous reaction occurs, releasing hydrogen ... [Pg.100]

Chloroform, CHCla, is an example of a polar molecule. It has the same bond angles as methane, CH4, and carbon tetrachloride, CCLi- Carbon, with sp3 bonding, forms four tetrahedrally oriented bonds (as in Figure 16-11). However, the cancellation of the electric dipoles of the four C—Cl bonds in CCL does not occur when one of the chlorine atoms is replaced by a hydrogen atom. There is, then, a molecular dipole remaining. The effects of such electric dipoles are important to chemists because they affect chemical properties. We shall examine one of these, solvent action. [Pg.312]

Physico-chemical properties of chlorine trifluoride. Y. D. Shishkov and A. A. Opalovskii, Russ. Chem. Rev. (Engl. Transl.), 1960,29, 357-364 (93). [Pg.63]

The effect of this partial double bond character on the chemical properties of chlorine atoms conjugated to double bonds is well known it corresponds in the main to a diminution in reactivity. The correlation with bond angles is discussed in a later section of this paper. [Pg.205]

Ionic compounds have chemical properties very different from those of the neutral atoms from which they form. Sodium metal reacts very violently with water, and chlorine gas is poisonous and highly corrosive. In contrast, sodium chloride simply dissolves in water and is a substance that most people use to season their food. [Pg.104]

Mendeleev also predicted the existence of elements that had not yet been discovered. His arrangement of the then-known elements left some obvious holes in the periodic table. For instance, between zinc (combines with 2 Cl) and arsenic (combines with 5 Cl) were holes for one element that would combine with three chlorine atoms and another that would combine with four. Mendeleev assigned these holes to two new elements. He predicted that one element would have a molar mass of 68 g/mol and chemical properties like those of aluminum, while the other would have a molar mass of 72 g /mol and chemical properties similar to silicon. These elements, gallium (Z = 31, M M = 69.7 g/mol) and germanium (Z = 32, M M — 72.6 g/mol), were discovered within 15 years. Chemists soon verified that gallium resembles aluminum in its chemishy, while germanium resembles silicon, just as Mendeleev had predicted. [Pg.521]

PHMB is very toxic to fish and aquatic life. It is moreover irritating to skin and may cause sensitization by skin contact. It can cause irritation to the eyes, nose and respiratory tract. The PHMB is not compatible with most common swimming pool chemicals. Not compatible with chlorine and chlorinated chemicals and bromine donors. Not compatible with ionic sterilizers, copper based QAC-algicides, anionic detergents, water softening chemicals, persulfate oxidants etc. The defence of the inventors of PHMB is that one should not combine it with other biocides because it should be a bactericide/algicide. But the algicidal properties of PHMB are very weak in brochures and manuals the dose is 200 ppm. [Pg.135]

Shiu, W.-Y., Gobas, F. A. P. C., Mackay, D. (1987) Physical-chemical properties of three congeneric series of chlorinated aromatic hydrocarbons. In QSAR in Environmental Toxicology II. Kaiser, K. L. E., Ed., pp. 347-362, D. Reidel Publishing, Dordrecht, The Netherlands. [Pg.57]


See other pages where Chlorine chemical properties is mentioned: [Pg.2419]    [Pg.508]    [Pg.314]    [Pg.426]    [Pg.306]    [Pg.321]    [Pg.309]    [Pg.199]    [Pg.382]    [Pg.421]    [Pg.464]    [Pg.475]    [Pg.37]    [Pg.492]    [Pg.373]    [Pg.477]    [Pg.481]    [Pg.107]    [Pg.282]    [Pg.455]    [Pg.116]    [Pg.772]    [Pg.49]    [Pg.58]    [Pg.1532]    [Pg.66]    [Pg.909]    [Pg.184]    [Pg.10]    [Pg.11]    [Pg.1027]   
See also in sourсe #XX -- [ Pg.11 ]




SEARCH



Chemicals chlorinated

Chemicals chlorine

Chlorine properties

© 2024 chempedia.info