Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chlorides alkyl, preparation from

In the plant, alkylations are carried out in large horizontal or upright kettles (see chrysophenine). The alkyl chlorides are prepared from hydrochloric acid, zinc chloride (ferric chloride can be used equally well in place of zinc chloride) and alcohol, and are transported in large iron cylinders and stored in reservoirs. For use, the material is trans-... [Pg.342]

Sulphamoyl chloride when reacted with hydroperoxides in the presence of pyridine below — 30 °C leads to the formation of the novel alkyl sulphamoyl peroxides H2NS0200CH2R (R = CH2CH3, CH2CH2CH3) 303 (equation 98)305. Hydrolysis or ammonolysis of these compounds leads to formation of sulphamic acid or sulphamide respectively. 2-Nitrophenylsulphamoyl chloride (304), prepared from the corresponding sulphamic acid by reaction with PC15, has been used to prepare iV-(2-nitrophenyl)-iV -substituted sulphamides (305) and aryl esters (306) (equation 99)306. [Pg.1000]

Urea derivadves are of general interest in medicinal chemistry. They may be obtained cither from urea itself (barbiturates, sec p. 306) or from amines and isocyanates. The latter are usually prepared from amines and phosgene under evolution of hydrogen chloride. Alkyl isocyanates are highly reactive in nucleophilic addidon reactions. Even amides, e.g. sulfonamides, are nucleophilic enough to produce urea derivatives. [Pg.301]

Silyl ethers serve as preeursors of nucleophiles and liberate a nucleophilic alkoxide by desilylation with a chloride anion generated from CCI4 under the reaction conditions described before[124]. Rapid intramolecular stereoselective reaction of an alcohol with a vinyloxirane has been observed in dichloro-methane when an alkoxide is generated by desilylation of the silyl ether 340 with TBAF. The cis- and tru/u-pyranopyran systems 341 and 342 can be prepared selectively from the trans- and c/.y-epoxides 340, respectively. The reaction is applicable to the preparation of 1,2-diol systems[209]. The method is useful for the enantioselective synthesis of the AB ring fragment of gambier-toxin[210]. Similarly, tributyltin alkoxides as nucleophiles are used for the preparation of allyl alkyl ethers[211]. [Pg.336]

Section 8 14 Nucleophilic substitution can occur with leaving groups other than halide Alkyl p toluenesulfonates (tosylates) which are prepared from alcohols by reaction with p toulenesulfonyl chloride are often used... [Pg.357]

Both reactants m the Williamson ether synthesis usually originate m alcohol pre cursors Sodium and potassium alkoxides are prepared by reaction of an alcohol with the appropriate metal and alkyl halides are most commonly made from alcohols by reaction with a hydrogen halide (Section 4 7) thionyl chloride (Section 4 13) or phosphorus tri bromide (Section 4 13) Alternatively alkyl p toluenesulfonates may be used m place of alkyl halides alkyl p toluenesulfonates are also prepared from alcohols as their imme diate precursors (Section 8 14)... [Pg.673]

Mercuration. Mercury(II) salts react with alkyl-, alkenyl-, and arylboranes to yield organomercurials, which are usehil synthetic intermediates (263). For example, dialkyhnercury and alkyhnercury acetates can be prepared from primary trialkylboranes by treatment with mercury(II) chloride in the presence of sodium hydroxide or with mercury(II) acetate in tetrahydrofuran (3,264). Mercuration of 3 -alkylboranes is sluggish and requires prolonged heating. Alkenyl groups are transferred from boron to mercury with retention of configuration (243,265). [Pg.315]

Ketenimines are usually prepared from carboxyHc acid derivatives such as amides and imino chlorides via elimination and from nitriles via alkylation with alkyl haHdes under strong basic conditions (21,64). [Pg.476]

Such copolymers of oxygen have been prepared from styrene, a-methylstyrene, indene, ketenes, butadiene, isoprene, l,l-diphen5iethylene, methyl methacrjiate, methyl acrylate, acrylonitrile, and vinyl chloride (44,66,109). 1,3-Dienes, such as butadiene, yield randomly distributed 1,2- and 1,4-copolymers. Oxygen pressure and olefin stmcture are important factors in these reactions for example, other products, eg, carbonyl compounds, epoxides, etc, can form at low oxygen pressures. Polymers possessing dialkyl peroxide moieties in the polymer backbone have also been prepared by base-catalyzed condensations of di(hydroxy-/ f2 -alkyl) peroxides with dibasic acid chlorides or bis(chloroformates) (110). [Pg.110]

Miscellaneous OC-Substituted Peroxides. 3-Aryl-3-(/ i alkylperoxy)-phthaHdes (12) are prepared from the corresponding 3-chlorophthaHdes and alkyl hydroperoxide (156). 2-Methyl-2-(/ f2 -alkylperoxy)-l,3-benzodioxan-4-ones (13) are obtained from 0-acetylsaHcyloyl chloride and alkyl hydroperoxides (157). Trisubstituted 2-(/ f2 -alkylperoxy)-l,3-dioxolan-4-ones (14) are synthesized from stericaHy favored a-acyloxy acid chlorides and alkyl hydroperoxides (158). [Pg.116]

Refluxing linoleic acid and a primary or secondary alkyl amine with -toluenesulfonic acid in toluene for 8—18 h also yields the substituted amides (32—34). The reaction of methyl esters with primary or secondary amines to make substituted amides is catalyzed with sodium methoxide. Reactions are rapid at 30°C under anhydrous conditions (35). Acid chlorides can also be used. Ai,A/-dibutyloleamide [5831-80-17 has been prepared from oleoyl chloride and dibutyl amine (36). [Pg.184]

OleFns and Fatty Alcohols. Alkylbenzyldimethylammonium (ABDM) quatematies are usually prepared from a-olefin or fatty alcohol precursors. Manufacturers that start from the fatty alcohol usually prefer to prepare the intermediate alkyldimethylamine direcdy by using dimethylamine and a catalyst rather than from fatty alkyl chloride. Small volumes of dialkyldimethyl and alkyltrimethyl quatematies in the Cg—range are also manufactured from these precursors (Fig. 4). [Pg.381]

In the piepaiation of ioveisol (12) (41), the key intermediate (23) is prepared from the diacid (20) by the action of thionyl chloride followed by 3-amino-l,2-propanediol. The alcohol groups of (23) are protected as the acetates (25), which is then N-acylated with acetoxyacetyl chloride and deprotected in aqueous methanol with sodium hydroxide to yield (26). N-alkylation of (26) produces ioversol (12). [Pg.465]

Because of the structural requirements of the bielectrophile, fully aromatized heterocycles are usually not readily available by this procedure. The dithiocarbamate (159) reacted with oxalyl chloride to give the substituted thiazolidine-4,5-dione (160) (see Chapter 4.19), and the same reagent reacted with iV-alkylbenzamidine (161) at 100-140 °C to give the 1 -alkyl-2-phenylimidazole-4,5-dione (162) (see Chapter 4.08). Iminochlorides of oxalic acid also react with iV,iV-disubstituted thioureas in this case the 2-dialkylaminothiazolidine-2,4-dione bis-imides are obtained. Thiobenzamide generally forms linear adducts, but 2-thiazolines will form under suitable conditions (70TL3781). Phenyliminooxalic acid dichloride, prepared from oxalic acid, phosphorus pentachloride and aniline in benzene, likewise yielded thiazolidine derivatives on reaction with thioureas (71KGS471). [Pg.129]

The 2-methylthioethyl ester is prepared from a carboxylic acid and methylthioethyl alcohol or methylthioethyl chloride (MeSCH2CH20H, TsOH, benzene, reflux, 55 h, 55% yield MeSCH2CH2Cl, Et3N, 65°, 12 h, 50-70% yield). It is cleaved by oxidation [H2O2, (NH4)6Mo7024, acetone, 25°, 2 h, 80-95% yield pH 10-11, 25°, 12-24 h, 85-95% yield] and by alkylation followed by hydrolysis (Mel, 70-95% yield pH 10, 5-10 min, 70-95% yield). ... [Pg.242]

Alkyldithio carbamates are prepared from the acid chloride (Et N, EtOAc, 0°) and amino acid, either free or as the O-silyl derivatives (70-88% yield). The N- i-propyldithio) carbamate has been used in the protection of proline during peptide synthesis. Alkyldithio carbamates can be cleaved with thiols, NaOH, Ph P/TsOH. They are stable to acid. Cleavage rates are a function of the size of the alkyl group as illustrated in the table below. [Pg.334]

Sulfonamides (R2NSO2R ) are prepared from an amine and sulfonyl chloride in the presence of pyridine or aqueous base. The sulfonamide is one of the most stable nitrogen protective groups. Arylsulfonamides are stable to alkaline hydrolysis, and to catalytic reduction they are cleaved by Na/NH3, Na/butanol, sodium naphthalenide, or sodium anthracenide, and by refluxing in acid (48% HBr/cat. phenol). Sulfonamides of less basic amines such as pyrroles and indoles are much easier to cleave than are those of the more basic alkyl amines. In fact, sulfonamides of the less basic amines (pyrroles, indoles, and imidazoles) can be cleaved by basic hydrolysis, which is almost impossible for the alkyl amines. Because of the inherent differences between the aromatic — NH group and simple aliphatic amines, the protection of these compounds (pyrroles, indoles, and imidazoles) will be described in a separate section. One appealing proj>erty of sulfonamides is that the derivatives are more crystalline than amides or carbamates. [Pg.379]

Organolithium compounds can readily be prepared from metallic Li and this is one of the major uses of the metal. Because of the great reactivity both of the reactants and the products, air and moisture must be rigorously excluded by use of an inert atmosphere. Lithium can be reacted directly with alkyl halides in light petroleum, cyclohexane, benzene or ether, the chlorides generally being preferred ... [Pg.102]

Preparation of thiadiazoles via the Hurd-Mori cyclization has led to the synthesis of a variety of biologically active and functionally useful compounds. Discussion of reactions prior to 1998 on the preparation of thiadiazoles have been compiled in a review by Stanetty et al Recent syntheses of thiadiazoles as intermediates for useful transformations to other heterocycles have appeared. For example, the thiadiazole intermediate 36 was prepared from the hydrazone 35 and converted to benzofuran upon treatment with base. Similarly, the thiadiazole acid chloride 38 was converted to the hydrazine 39 which, upon base treatment, provided the pyrazolone, which can be sequentially alkylated in situ to provide the product 40. ... [Pg.287]

The respective amide was prepared from 7-substituted 5-oxo-2,3-dihydro-5//-pyrido[l,2,3-de]-l,4-benzoxazine-6-carboxylic acids via acid chlorides with different benzylamines (00M1P3). 6-Carboxamides were N-benzylated, and a side-chain phenolic hydroxy group was O-alkylated. 7-Aryl-5-oxo-2,3-dihydro-5//-pyrido[l, 2,3-r/e]-1,4-benzoxazine-6-carboxylic acid was obtained from the ethyl ester by alkalic hydrolysis. [Pg.277]


See other pages where Chlorides alkyl, preparation from is mentioned: [Pg.440]    [Pg.184]    [Pg.303]    [Pg.15]    [Pg.15]    [Pg.158]    [Pg.193]    [Pg.161]    [Pg.135]    [Pg.230]    [Pg.385]    [Pg.6]    [Pg.441]    [Pg.104]    [Pg.246]    [Pg.218]    [Pg.339]    [Pg.88]    [Pg.547]    [Pg.38]    [Pg.166]    [Pg.10]    [Pg.401]   


SEARCH



Alkyl chloride alkylation

Alkyl chlorides

Alkyl chlorides, preparation

Alkyl preparation

Alkylated preparation

Chlorides, preparation

Preparation of alkyl chlorides from alcohols

© 2024 chempedia.info