Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chiral stationary phases high-performance liquid

Weems, H.B., Mushtaq, M., and Yang, S.K., Resolution of epoxide enantiomers of polycyclic aromatic hydrocarbons by chiral stationary-phase high-performance liquid chromatography, Anal. Biochem., 148, 328, 1985. [Pg.148]

H. Weems and K. Zamani, Resolution of terfenadine enantiomers by j3-cyclodextrin chiral stationary phase high-performance liquid chromatography, Chirality, 4 268 (1992). [Pg.244]

C Fischer, F Schonberger, W Muck, K Heuck, M Eichelbaum. Simultaneous assessment of the intravenous and oral disposition of the enantiomers of racemic nimodi-pine by chiral stationary-phase high-performance liquid chromatography and gas chromatography/mass spectroscopy combined with a stable isotope technique. J... [Pg.187]

Tanaka, M., Yamazaki, H. (1996). Direct determination of pantoprazole enantiomers in human serum by reverse-phase high-performance liquid chromatography using a cellulose-based chiral stationary phase and column-switching system as a sample cleanup procedure. Anal. Chem. 68, 1513-16. [Pg.344]

In recent years several sensitive and specific methods for the simultaneous determination of ephedrine alkaloids in plant material have been published. These include thin-layer chromatography (292,426), gas chromatography (251), straight-phase and reversed-phase high-performance liquid chromatography (253, 255, 302, 355, 427), isotachophoresis (303, 356), and 13C-NMR (304). Resolution of enantiomeric alkaloids by HPLC has been achieved on chiral stationary phases (417, 418) or after derivatization with a chiral agent on an achiral stationary phase (419). Chromatographic separation and analytical detection of... [Pg.131]

V.l Efficient normal-phase high-performance liquid chromatographic enantioseparation of underivatized chiral aryl-alcohols on four differently linked 3,5-di-nitrobenzoyldiphenylethanediamine-de-rived chiral stationary phases,/. Chromatogr. A, 1996, 732, 215-230. [Pg.257]

Recently, optically active polythiophenes, incorporating as ring substituents chiral selectors such as (R)-(-)- and CS )-(+)-/V-(3,5-dinitrobcnzoyl)-a-phcnylglycinc used in Pirkle-type stationary phases, have been synthesized.167 These may have potential in enantioselective analysis of chiral chemicals using high performance liquid chromatography (HPLC). [Pg.224]

High Performance Liquid Chromatography. Although chiral mobile phase additives have been used in high performance Hquid chromatography (hplc), the large amounts of solvent, thus chiral mobile phase additive, required to pre-equiUbrate the stationary phase renders this approach much less attractive than for dc and is not discussed here. [Pg.63]

Despite the difficulties caused by the rapidly expanding literature, the use of chiral stationary phases (CSPs) as the method of choice for analysis or preparation of enantiomers is today well established and has become almost routine. It results from the development of chiral chromatographic methods that more than 1000 chiral stationary phases exemplified by several thousands of enantiomer separations have been described for high-performance liquid chromatography (HPLC). [Pg.94]

Ichihara, H., Fukushima, T., Imai, K. (1999).. Enantiomeric determination of d- and L-lactate in rat serum using high-performance liquid chromatography with a cellulose-type chiral stationary phase and fluorescence detection. Anal. Biochem. 269, 379-385. [Pg.342]

Wainer, I.W., Stiffin, R.M. (1988). Direct resolution of the stereoisomers of leucovorin and 5-methyltetrahydrofolate using a bovine serum albumin high-performance liquid chromatographic chiral stationary phase coupled to an achiral phenyl column. J. Chromatogr. 424, 158-162. [Pg.344]

Aboul-Enein and Ali [78] compared the chiral resolution of miconazole and two other azole compounds by high performance liquid chromatography using normal-phase amylose chiral stationary phases. The resolution of the enantiomers of ( )-econazole, ( )-miconazole, and (i)-sulconazole was achieved on different normal-phase chiral amylose columns, Chiralpak AD, AS, and AR. The mobile phase used was hexane-isopropanol-diethylamine (400 99 1). The flow rates of the mobile phase used were 0.50 and 1 mL/min. The separation factor (a) values for the resolved enantiomers of econazole, miconazole, and sulconazole in the chiral phases were in the range 1.63-1.04 the resolution factors Rs values varied from 5.68 to 0.32. [Pg.52]

In this study, Ali and Aboul-Enein [80] used cellulose tr is (3,5-d ich Ioropheny 1 carbamate) chiral stationary phase for the enantioseparation of miconazole and other clinically used drugs by high performance liquid chromatography. The mobile... [Pg.52]

Okamoto et al [85] performed the optical resolution of primaquine and other racemic drugs by high performance liquid chromatography using cellulose and amylose tris-(phenylcarbamate) derivatives as chiral stationary phases. Primaquine and other compounds were effectively resolved by cellulose and/or amylose derivatives having substituents such as methyl, tertiary butyl, or halogen, on the phenyl groups. [Pg.190]

Figure 1-14. Chiral stationary phase for high-performance liquid chromatography. Figure 1-14. Chiral stationary phase for high-performance liquid chromatography.
Ding, GS. etal.. Chiral separation of enantiomers of amino acid derivatives by high-performance liquid chromatography on a norvancomycin-bonded chiral stationary phase, Talanta, 62, 997, 2004. [Pg.162]

Berthod, A. et al.. Evaluation of the macrocyclic glycopeptide A-40,926 as a high-performance liquid chromatographic chiral selector and comparison with teicoplanin chiral stationary phase, J. Chromatogr. A, 897, 113, 2000. [Pg.163]

D Acquarica, L, New synthetic strategies for the preparation of novel chiral stationary phases for high-performance liquid chromatography containing natural pool selectors, J. Pharm. Biomed. Anal, 23, 3, 2000. [Pg.164]

Bosakova, Z., Cufinovd, E., and Tes ovd, E., Comparison of vancomycin-based stationary phases with different chiral selector coverage for enantioselective separation of selected drugs in high-performance liquid chromatography, J. Chromatogr. A, 1088, 94, 2005. [Pg.168]

Peter, A., Torok, G., and Armstrong, D.W., High-performance liquid chromatographic separation of enantiomers of unusual amino acids on a teicoplanin chiral stationary phase, J. Chromatogr. A, 793, 283, 1998. [Pg.169]

Torok, G. et al.. Direct chiral separation of unnatural amino acids by high performance liquid chromatography on a ristocetin A-bonded stationary phase. Chirality, 13, 648, 2001. [Pg.169]

Fried, K.M., Koch, P, and Wainer, I.W., Determination of the enantiomers of albuterol in human and canine plasma by enantioselective high-performance liquid chromatography on a teicoplanin-based chiral stationary phase. Chirality, 10, 484, 1998. [Pg.170]

Aboul-Enein, H.Y. and Serignese, V., Quantitative determination of clenbuterol enantiomers in human plasma by high-performance liquid chromatography using the macrocyclic antibiotic chiral stationary phase teicoplanin, Biomed. Chromatogr., 13, 520, 1999. [Pg.170]


See other pages where Chiral stationary phases high-performance liquid is mentioned: [Pg.140]    [Pg.140]    [Pg.26]    [Pg.731]    [Pg.454]    [Pg.286]    [Pg.287]    [Pg.287]    [Pg.287]    [Pg.297]    [Pg.48]    [Pg.53]    [Pg.158]    [Pg.172]    [Pg.121]    [Pg.123]    [Pg.165]    [Pg.214]   


SEARCH



Chiral liquid stationary phases

Chiral phases

Chiral stationary phases

Chirality/Chiral phases

High chirality

High performance liquid chromatography chiral stationary phases

High performance liquid stationary phases

High phases

High stationary phases

Phases chirality

Stationary liquid phases

© 2024 chempedia.info