Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diphosphine chiral

The most effective catalysts for enantioselective amino acid synthesis are coordination complexes of rhodium(I) with 1,5-cyclooctadiene (COD) and a chiral diphosphine such as (JR,jR)-l,2-bis(o-anisylphenylphosphino)ethane, the so-called DiPAMP ligand. The complex owes its chirality to the presence of the trisubstituted phosphorus atoms (Section 9.12). [Pg.1027]

The disclosure, in 1982, that cationic, enantiopure BINAP-Rh(i) complexes can induce highly enantioselective isomerizations of allylic amines in THF or acetone, at or below room temperature, to afford optically active enamines in >95 % yield and >95 % ee, thus constituted a major breakthrough.67-68 This important discovery emerged from an impressive collaborative effort between chemists representing Osaka University, the Takasago Corporation, the Institute for Molecular Science at Okazaki, Japan, and Nagoya University. BINAP, 2,2 -bis(diphenylphosphino)-l,l -binaphthyl (Scheme 7), is a fully arylated, chiral diphosphine which was introduced in... [Pg.349]

Significant advance in the field of asymmetric catalysis was also achieved with the preparation of l,2-bis(phospholano)benzene (DuPHOS 4) and its confor-mationally flexible derivative (l,2-bis(phospholano)ethane, known as BPE) by Burk et al. [59]. Two main distinctive features embodied by these Hgands, as compared to other known chiral diphosphine ligands, are the electron-rich character of the phosphorus atoms on the one hand and the pseudo-chirality at phosphorus atoms, on the other. These properties are responsible for both the high activity of the corresponding metal complex and an enantioselection indepen-... [Pg.8]

Although sulfur is unHkely to chelate the metal in this case, it is worth mentioning the axially chiral diphosphine Hgands, based on hz-thienyl systems which increase the electronic density at phosphorus such as 159 (used in Ru-catalyzed reduction of /1-keto esters with 99% ee) [llla],BITIANP 160,andTMBTP 161 (in a Pd-catalyzed Heck reaction, the regio- and enantioselectivity are high with 160 but low with 161) [mb]. [Pg.193]

For example, the hydrogenation of methyl (Z)-a-acetamidocinnamate gives a chiral product when conducted in the presence of a chiral diphosphine catalyst. The enantiomeric excess data for micro-reactor and batch operation are in line when performed imder similar conditions [169]. A very high reproducibility of determining data on enantiomeric excess was reported [170]. In addition, the ee distribution was quite narrow 90% of aU ee data were within 40-48% [170]. [Pg.73]

Another class of chiral diphosphine ligands bearing two interconnected thiophene rings, has been successfully developed by Sannicolo et al. These bis(diphenylphosphino)[Z)]thiophene ligands, called tetraMe-BITIANP and... [Pg.248]

An especially important case is the enantioselective hydrogenation of a-amidoacrylic acids, which leads to a-aminoacids.29 A particularly detailed study has been carried out on the mechanism of reduction of methyl Z-a-acetamidocinnamate by a rhodium catalyst with a chiral diphosphine ligand DIPAMP.30 It has been concluded that the reactant can bind reversibly to the catalyst to give either of two complexes. Addition of hydrogen at rhodium then leads to a reactive rhodium hydride and eventually to product. Interestingly, the addition of hydrogen occurs most rapidly in the minor isomeric complex, and the enantioselectivity is due to this kinetic preference. [Pg.380]

Many chiral diphosphine ligands have been evaluated with regard to inducing enantioselectivity in the course of the hydroformylation reaction [25,26]. However, a real breakthrough occurred in 1993 with the discovery of the BI-NAPHOS ligand by Takaya and Nozaki [65]. This was the first efficient and rather general catalyst for the enantioselective hydroformylation of several classes of alkenes, such as aryl alkenes, 1-heteroatom-functionalized alkenes, and substituted 1,3-dienes, and is still a benchmark in this area [66,67]. But still a major problem in this field is the simultaneous control of enantio-... [Pg.158]

Other chiral diphosphine ligands (374), (375), (376), and (377) bind to iridium with little diastereoselectivity.603 The complexes are characterized by 1H and 31P H NMR spectroscopy. [Pg.216]

A chiral diphosphine ligand was bound to silica via carbamate links and was used for enantioselective hydrogenation.178 The activity of the neutral catalyst decreased when the loading was increased. It clearly indicates the formation of catalytically inactive chlorine-bridged dimers. At the same time, the cationic diphosphine-Rh catalysts had no tendency to interact with each other (site isolation).179 New cross-linked chiral transition-metal-complexing polymers were used for the chemo- and enantioselective epoxidation of olefins.180... [Pg.261]

The cA-PtCl2(diphosphine)/SnCl2 constitutes the system mostly used in catalyzed hydroformylation of alkenes and many diphosphines have been tested. In the 1980s, Stille and co-workers reported on the preparation of platinum complexes with chiral diphosphines related to BPPM (82) and (83) and their activity in asymmetric hydroformylation of a variety of prochiral alkenes.312-314 Although the branched/normal ratios were low (0.5), ees in the range 70-80% were achieved in the hydroformylation of styrene and related substrates. When the hydroformylation of styrene, 2-ethenyl-6-methoxynaphthalene, and vinyl acetate with [(-)-BPPM]PtCl2-SnCl2 were carried out in the presence of triethyl orthoformate, enantiomerically pure acetals were obtained. [Pg.166]

Modified rhodium systems show considerable activity in the hydroformylation of styrene to the branched aldehydes. Chiral diphosphines, diphosphites, and phosphine-phosphites have been the ligands most studied. Hydroformylation experiments have often been performed in situ but the characterization of intermediates has provided an interesting contribution to coordination chemistry.179... [Pg.171]

CHIRAPHOS (86), bdpp (87), DIOP (85), deguphos (117), and related chiral diphosphines have been used as ligands in asymmetric hydroformylation of styrene and related substrates.255 347-349... [Pg.171]

Based on this, asymmetric hydroamination was developed using [Ir(C2H4)4Cl] or lr(coe)2Cl]2 (coe = cyclooctene) with chiral diphosphines to give complexes (57)-(61) (Scheme 40). While (57) afforded only a low yield and poor enantiomeric excess (51% 2S) of exo-2-(phenylamino)nor-bornane, addition of up to one equivalent of fluoride ion gave a six-fold increase in chemical yield (from 12% to 81%) and a reversal of enantioselectivity. In the case of (60), addition of four equivalents of fluoride led to an ee of 95 % The role of fluoride in these reactions has still not been explained satisfactorily.175... [Pg.293]

Recently, a series of chiral diphosphines (S. -Me-Duphos, (S. -chiraphos, (R,R)-diop and (+)-Norphos were grafted after an ionic exchange onto Al-MCM-41 134 complexes of the form [Rh(cod)(diphosphine)]+ were tested for the hydrogenation of dimethylitaconate. The supported complex with (S,S)-methyl-Duphos reached an activity for the formation of dimethyl ( -methyl-succinate as high as TON = 4000 with an ee close to 92%. Both (R,R)-diop and (,S S )-chiraphos give lower enantioselectivities (ee = 34% and 47% respectively). With (+)-Norphos, dimethyl-([Pg.457]

An enantioselective synthesis of 2-alkylidene-l,4-dioxanes is based on the Pd-catalysed heteroannulation of alkynyl carbonates to benzene-1,2-diol in the presence of chiral diphosphine ligands (Scheme 63) . [Pg.334]

In this reaction, a rhodium atom complexed to a chiral diphosphine ligand ( P—P ) catalyzes the hydrogenation of a prochiral enamide, with essentially complete enan-tioselectivity and limiting kinetic rates exceeding hundreds of catalyst turnovers per second. While precious metals such as Ru, Rh, and Ir are notably effective for catalysis of hydrogenation reactions, many other transition-metal and lanthanide complexes exhibit similar potency. [Pg.488]

Monsanto (2) A catalytic process for synthesizing the drag L-DOPA. The catalyst is a chiral diphosphine-rhodium complex. Invented in the early 1970s. [Pg.182]

Enantioselective desymmetrization of meso-succinic anhydrides with diphenylzinc is catalyzed by Pd(OAc)2/chiral diphosphine 209 (Equation (113)).470... [Pg.468]

Shibasaki et al. also developed catalytic reactions of copper, some of which can be applied to catalytic asymmetric reactions. Catalytic aldol reactions of silicon enolates to ketones proceed using catalytic amounts of CuF (2.5 mol%) and a stoichiometric amount of (EtO)3SiF (120 mol%) (Scheme 104).500 Enantioselective alkenylation catalyzed by a complex derived from CuF and a chiral diphosphine ligand 237 is shown in Scheme 105.501 Catalytic cyanomethyla-tion by using TMSCH2CN was also reported, as shown in Scheme 106.502... [Pg.475]

The development of chiral catalysts for use in enantioselective rhodium-catalyzed hydroborations was pioneered by Burgess9, Suzuki,77 and Hayashi.78 The chiral diphosphine ligands employed in their preliminary investigations 23-26 (Figures 2(a) and 2(b)), had previously been successfully applied in other catalytic asymmetric transformations. [Pg.845]

As a greater understanding has emerged of the control factors at play in enantioselective rhodium-catalyzed hydroborations, an increased number of novel chiral diphosphine ligands have been reported in the chemical literature (Figure 3), the majority of these within the last five years. [Pg.845]

Figure 2 Chiral diphosphine ligands for asymmetric hydroboration. Figure 2 Chiral diphosphine ligands for asymmetric hydroboration.
Although the vast majority of centrally chiral diphosphine ligands to be employed in enantioselective rhodium-catalyzed hydroborations possess -symmetry, there are a few examples of ( -symmetric diphosphine ligands. Buono prepared bis(aminophosphine) ligands 35-38,81 while Bianchini reported (R, i )-BDPBzP 39 (Figure 5).82... [Pg.848]


See other pages where Diphosphine chiral is mentioned: [Pg.89]    [Pg.19]    [Pg.309]    [Pg.431]    [Pg.236]    [Pg.294]    [Pg.295]    [Pg.369]    [Pg.185]    [Pg.212]    [Pg.1049]    [Pg.76]    [Pg.82]    [Pg.84]    [Pg.88]    [Pg.90]    [Pg.129]    [Pg.141]    [Pg.166]    [Pg.171]    [Pg.194]    [Pg.102]    [Pg.331]    [Pg.847]    [Pg.848]    [Pg.850]   
See also in sourсe #XX -- [ Pg.543 , Pg.544 ]

See also in sourсe #XX -- [ Pg.33 ]




SEARCH



Diphosphine

Diphosphines

© 2024 chempedia.info