Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chiral acetal-based

The wide applicability of the PK reaction is apparent in the synthesis of pyrroles, for example, 45, en route to novel chiral guanidine bases, levuglandin-derived pyrrole 46, lipoxygenase inhibitor precursors such as 47, pyrrole-containing zirconium complexesand iV-aminopyrroles 48 from 1,4-dicarbonyl compounds and hydrazine derivatives. The latter study also utilized Yb(OTf)3 and acetic acid as pyrrole-forming catalysts, in addition to pyridinium p-toluenesulfonate (PPTS). [Pg.85]

The catalytic alcohol racemization with diruthenium catalyst 1 is based on the reversible transfer hydrogenation mechanism. Meanwhile, the problem of ketone formation in the DKR of secondary alcohols with 1 was identified due to the liberation of molecular hydrogen. Then, we envisioned a novel asymmetric reductive acetylation of ketones to circumvent the problem of ketone formation (Scheme 6). A key factor of this process was the selection of hydrogen donors compatible with the DKR conditions. 2,6-Dimethyl-4-heptanol, which cannot be acylated by lipases, was chosen as a proper hydrogen donor. Asymmetric reductive acetylation of ketones was also possible under 1 atm hydrogen in ethyl acetate, which acted as acyl donor and solvent. Ethanol formation from ethyl acetate did not cause critical problem, and various ketones were successfully transformed into the corresponding chiral acetates (Table 17). However, reaction time (96 h) was unsatisfactory. [Pg.73]

A third route to nonracemic a-alkoxy and a-hydroxy stannaries employs the chiral acetal 73 prepared from (f ,f )-2,4-pentanediol (Scheme 30)66. Addition of various Grignard reagents to this acetal in the presence of TiCLt results in selective displacement yielding (S )-a-alkoxy stannanes. The corresponding a-hydroxy derivatives can be obtained after oxidation and mild base treatment. Organocuprates can also be employed to cleave this acetal but with somewhat lower selectivity67. [Pg.233]

Two patterns are possible in the activation mechanism by simple chiral Lewis base catalysts. One is through the activation of nucleophiles such as aUyltrichlorosilanes or ketene trichlorosilyl acetals via hypervalent silicate formation using organic Lewis bases such as chiral phosphoramides or A-oxides. " In this case, catalysts are pure organic compounds (see Chapter 11). The other is through the activation of nucleophiles by anionic Lewis base conjugated to metals. In this case, transmetal-lation is the key for the nucleophile activation. This type of asymmetric catalysis is the main focus of this section. [Pg.394]

Denmark utilized chiral base promoted hypervalent silicon Lewis acids for several highly enantioselective carbon-carbon bond forming reactions [92-98]. In these reactions, a stoichiometric quantity of silicon tetrachloride as achiral weak Lewis acid component and only catalytic amount of chiral Lewis base were used. The chiral Lewis acid species desired for the transformations was generated in situ. The phosphoramide 35 catalyzed the cross aldolization of aromatic aldehydes as well as aliphatic aldehydes with a silyl ketene acetal (Scheme 26) [93] with good yield and high enantioselectivity and diastereoselectivity. [Pg.362]

One of the first fluorescence-based ee assays uses umbelliferone (14) as the built-in fluorophore and works for several different types of enzymatic reactions 70,86). In an initial investigation, the system was used to monitor the hydrolytic kinetic resolution of chiral acetates (e.g., rac-11) (Fig. 8). It is based on a sequence of two coupled enzymatic steps that converts a pair of enantiomeric alcohols formed by the asymmetric hydrolysis under study (e.g., R - and (5)-12) into a fluorescent product (e.g., 14). In the first step, (R)- and (5)-ll are subjected separately to hydrolysis in reactions catalyzed by a mutant enzyme (lipase or esterase). The goal of the assay is to measure the enantioselectivity of this kinetic resolution. The relative amount of R)- and ( S)-12 produced after a given reaction time is a measure of the enantioselectivity and can be ascertained rapidly, but not directly. [Pg.18]

Chiral acetals have also been used as chiral auxiliaries for the enantioselective cyclopropanation of a,/3-unsaturated carbonyl derivatives (Figure 7). Yamamoto s tartrate derived auxiliaries (15) based on the ether-directed cyclopropanation allowed the efficient preparation of cyclopropylcarboxaldehyde derivatives The reaction proceeded with high diastereocontrol, and the auxiliary could be cleaved under mild acidic conditions (equation 73). [Pg.268]

The second substrate glyoxylate approaches from the other side of the molecule and condenses as is shown. Since any one of the three protons in either R or S chiral acetyl-CoA might have been abstracted by base B, several possible combinations of isotopes are possible in the L-malate formed. One of the results of the experiment using chiral (R) acetyl-CoA is illustrated in Eq. 13-43. The reader can easily tabulate the results of removal of the 2H or 3H. However, notice that if the base -B removes 2H (D) or 3H (T) the reaction will be much slower because of the kinetic isotope effects which are expected to be Hk/"k 7 and "k/ k = 16. A second important fact is that the pro-R hydrogen at C-3 in malate is specifically exchanged out into water by the action of fumarate hydratase. From the distribution of tritium in the malate and fumarate formed using the two chiral acetates, the inversion by malate synthase was established. See Kyte231 for a detailed discussion. [Pg.704]

In a different approach, the hydrolase-catalyzed kinetic resolution of chiral acetates was studied using a high-throughput ee assay also based on an enzyme-coupled test, the presence of a fluorogenic moiety not being necessary [16]. The assay is based on the idea that the acetic acid formed by hydrolysis of a chiral acetate can be transformed stoichiometrically into NADH in a series of coupled enzyme reactions using commercially available enzyme kits (Fig. 9.10). The NADH is then... [Pg.132]

The rhodium(II) catalysts and the chelated copper catalysts are considered to coordinate only to the carbenoid, while copper triflate and tetrafluoioborate coordinate to both the carbenoid and alkene and thus enhance cyclopropanation reactions through a template effect.14 Palladium-based catalysts, such as palladium(II) acetate and bis(benzonitrile)palladium(II) chloride,l6e are also believed to be able to coordinate with the alkene. Some chiral complexes based on cobalt have also been developed,21 but these have not been extensively used. [Pg.1033]

Some of the most impressive advances in the area of catalytic, enantioselective aldol addition reactions have taken place in the development of catalytic methods for enantioselective acetate aldol additions, a reaction type that has long been recalcitrant. Thus, although prior to 1992 a number of chiral-auxiliary based and catalytic methods were available for diastereo- and enantiocontrol in propionate aldol addition reactions, there was a paucity of analogous methods for effective stereocontrol in the addition of the simpler acetate-derived enol silanes. However, recent developments in this area have led to the availability of several useful catalytic processes. Thus, in contrast to the state of the art in 1992, it is possible to prepare acetate-derived aldol fragments utilizing asymmetric catalysis with a variety of transition-metal based complexes of Ti(IV), Cu(II), Sn(II), and Ag(I). [Pg.525]

A further development, by the Grigg group, was the use of menthyl acetal 48 26 This chiral acetal reacted with aromatic iminoesters 43c-g in the presence of silver acetate (1.5 equiv) and guanidine base 47 (1.2 equiv) in acetonitrile, to give cycloadducts 49 in good yields and as a single diastereoisomer in each case (Scheme 2.13). In contrast, toluene was the preferred solvents for aliphatic iminoesters 43e and 43m-p. [Pg.52]

Ester Enolate Aldol Additions to Aldehydes. Among the first examples of aldol additions employing chiral Lewis bases as catalysts were the additions of trichlorosilyl ketene acetals to aldehydes. Silyl ketene acetal 7 could be generated by metathesis of methyl tributylstannylacetate with SiCL. Treatment of 7 with benzaldehyde and 10 mol % of a phosphoramide in CH2CI2 at —78°C afforded aldol products in good to high yields with moderate enantioselectivities for all phosphoramides employed. Reaction of 7 with pivalaldehyde provided aldol products in similar yields and with slightly improved enantioselectivities. The increase in stereoselection is presumably attributed to a less com-... [Pg.274]

Sugars have also been used as chiral auxiliaries in acetal formation for diaste-reoselective radical cyclizations [52]. In Eq. (13.40) a chiral acetal is utilized to control the stereochemistry of a 5-exo-dig cyclization resulting in the formation of quaternary carbon-based stereocenters. Product 129 is formed as a single diaste-reomer in 35% yield. An allylic strain model is proposed to account for the stereochemical outcome of this reaction. [Pg.526]

Reagent-induced diastereoselectivity remains relatively unexplored for the [2,3] Wittig rearrangement. In the presence of the chiral amide base (S,S)-44, rearrangement of the propargyl-oxy acetic acid 45 affords a modest excess of the -alcohol 4676. [Pg.494]

Perhaps the most interesting developments in the area of selective lithiations to appear this year have been concerned with the control of absolute stereochemistry. The application of chiral amide bases to the enantioselective deprotonation of epoxides was first described some years ago by Whitesell and co-workers, but this year several groups have reported on other aspects of these useful reaqents. Symmetrically substituted ketones (5 R=Me, CH2Ph) have been shown by Simpkins to undergo an enantioselective deprotonation under kinetically controlled conditions to give, after reaction with an electrophile (iodomethane, allyl bromide or acetic anhydride), optically active ketones (6) or enol acetates (7) (Scheme 2). The ability of a number of bases to discriminate between the two prochiral protons present in (5) were evaluated and the most effective of those studied was the camphor derivative (8) deprotonation of (5 R=Me) proceeded in 74% enantiomeric excess... [Pg.437]

Hitherto unreported (— )-conduramine E (170) was synthesized from 169 in ca. 50% overall yield as outlined in Scheme 27. Enzyme (esterase) induced monodeacetylation was followed by Mitsunobu-type inversion with an AT-nucleophile in the presence of acetic acid. endo-Cyclization with concomitant epoxide-opening produced a urethane bearing the correct stereochemistry at the four chiral centres. Base treatment revealed the (—)-conduramine [for (+)-conduramine E see Vol. 29, p. [Pg.231]

A number of chiral acetal derivatives have also proved effective in asymmetric cyclopropanation reactions, with auxiliaries based on tartaric acid proving to be partieularly usefiil. In the case of cyclic a,P unsaturated compounds, di-O-benylthreitol derivatives (see 51) imdergo efficient and diastereoselective Simmons-Smith reactions to give the cyclopropanated products SS. ... [Pg.33]

Successful asymmetric allylations have been carried out with high ee values using many kinds of chiral ligands. 1,3-Diphenylallyl acetate is used as a standard substrate to compare different chiral ligands based on desymmetrization of its meio-Tr-allylpalladium intermediate. Asymmetric allylation is treated in Sect. V.2.4. [Pg.49]

In 2013, Wong and Landis [26] investigated an asymmetric hydroformylation-(Wittig olefination) reaction of vinyl acetate by using a chiral catalyst based on (S,S,S)-BDP at 10bar (Scheme 5.136). After optimization, several other functionalized and nonfunctionalized olefins or 1,3-dienes could be converted under these conditions. [Pg.502]


See other pages where Chiral acetal-based is mentioned: [Pg.12]    [Pg.223]    [Pg.581]    [Pg.15]    [Pg.125]    [Pg.305]    [Pg.2071]    [Pg.146]    [Pg.878]    [Pg.165]    [Pg.165]    [Pg.491]    [Pg.375]    [Pg.349]    [Pg.258]    [Pg.266]    [Pg.271]    [Pg.315]    [Pg.315]    [Pg.508]    [Pg.437]    [Pg.2070]    [Pg.24]    [Pg.165]    [Pg.335]    [Pg.377]    [Pg.211]    [Pg.680]    [Pg.25]   
See also in sourсe #XX -- [ Pg.437 ]




SEARCH



Acetals chiral

Chiral acetate

© 2024 chempedia.info