Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemistry, kinds

Time-of-flight mass spectrometers have been used as detectors in a wider variety of experiments tlian any other mass spectrometer. This is especially true of spectroscopic applications, many of which are discussed in this encyclopedia. Unlike the other instruments described in this chapter, the TOP mass spectrometer is usually used for one purpose, to acquire the mass spectrum of a compound. They caimot generally be used for the kinds of ion-molecule chemistry discussed in this chapter, or structural characterization experiments such as collision-induced dissociation. Plowever, they are easily used as detectors for spectroscopic applications such as multi-photoionization (for the spectroscopy of molecular excited states) [38], zero kinetic energy electron spectroscopy [39] (ZEKE, for the precise measurement of ionization energies) and comcidence measurements (such as photoelectron-photoion coincidence spectroscopy [40] for the measurement of ion fragmentation breakdown diagrams). [Pg.1354]

Optical metiiods, in both bulb and beam expermrents, have been employed to detemiine tlie relative populations of individual internal quantum states of products of chemical reactions. Most connnonly, such methods employ a transition to an excited electronic, rather than vibrational, level of tlie molecule. Molecular electronic transitions occur in the visible and ultraviolet, and detection of emission in these spectral regions can be accomplished much more sensitively than in the infrared, where vibrational transitions occur. In addition to their use in the study of collisional reaction dynamics, laser spectroscopic methods have been widely applied for the measurement of temperature and species concentrations in many different kinds of reaction media, including combustion media [31] and atmospheric chemistry [32]. [Pg.2071]

Nomenclature is the compilation of descriptions of things and technical terms in a special field of knowledge, the vocabulary ofa technical language. In the history of chemistry, a systematic nomenclature became significant only rather late. In the early times of alchemy, the properties of the substance or its appearance played a major role in giving a compound a name. Libavius was the first person who tried to fix some kind of nomenclature in Alckeinia in 1,597. In essence, he gave names to chemical equipment and processes (methods, names that are often still valid in our times. [Pg.18]

Most chemists want to avoid the paper-and-pencil type of work that theoretical chemistry in its truest form entails. However, keep in mind that it is precisely for this kind of painstaking and exacting research that many Nobel prizes have been awarded. This book will focus almost exclusively on the knowledge needed to effectively use existing computer software for molecular modeling. [Pg.1]

Any commercially available vacuum pump is perfectly fine for the underground chemist s needs but the best kind to buy is a diaphragm pump, which is more resistant to the often-harsh chemical vapors that are sucked through it. Most vacuum pumps cost about 100- 200. However, the stronger the vacuum the better. If a chemist is looking to pull 1mm of Hg (don t ask) like the girls in the chemistry papers do then she can be looking at a turbovac that can run well over 5000. [Pg.16]

Since we re on the subject of clean water, this is as good a time as any to discuss what kind of water is used in all this chemistry. By clean water Strike means distilled water (dH20). All reactions are to use distilled water (dH20) only. All solutions and dilutions are to be made with dH20 as well. Distilled water sells for about 1 a... [Pg.28]

METHOD 2 This method is a backup use for all that bromo-safrole or phenylisopropyl-bromide that the chemist made. It is the simplest method in the entire book, uses the cheapest most basic ingredients and happens to be the first method that Strike ever studied [59]. Strike does not have many fond reminiscences about this method because it kind of sucks but the chemistry is so basic that it may well serve the most pathetic chemist. The reaction proceeds as follows which uses ammonia to replace the bromine giving MDA or amphetamine directly ... [Pg.156]

Organic chemistry involves a good bit of reasoning by analogy and looking for trends The kind of reasoning we carried out in this section will become increasingly familiar as we learn more about the connection between structure and properties... [Pg.43]

A particular kind of conjugate addition reaction earned the Nobel Prize in chemistry for Otto Diels and Kurt Alder of the University of Kiel (Germany) m 1950 The Diels-Alder reaction is the conjugate addition of an alkene to a diene Using 1 3 buta diene as a typical diene the Diels-Alder reaction may be represented by the general equation... [Pg.409]

This kind of chemical reactivity of epoxides is rather general Nucleophiles other than Gng nard reagents react with epoxides and epoxides more elaborate than ethylene oxide may be used All these features of epoxide chemistry will be discussed m Sections 16 11-16 13... [Pg.633]

The structural features especially the very polar nature of the carbonyl group point clearly to the kind of chemistry we will see for aldehydes and ketones in this chapter The partially positive carbon of C=0 has carbocation character and is electrophilic The planar arrangement of its bonds make this carbon relatively uncrowded and susceptible to attack by nucleophiles Oxygen is partially negative and weakly basic... [Pg.708]

Many globular proteins are enzymes They accelerate the rates of chemical reactions m biological systems but the kinds of reactions that take place are the fundamental reactions of organic chemistry One way m which enzymes accelerate these reactions is by bringing reactive func tions together m the presence of catalytically active functions of the protein... [Pg.1152]

The pore systems of solids are of many different kinds. The individual pores may vary greatly both in size and in shape within a given solid, and between one solid and another. A feature of especial interest for many purposes is the width w of the pores, e.g. the diameter of a cylindrical pore, or the distance between the sides of a slit-shaped pore. A convenient classification of pores according to their average width originally proposed by Dubinin and now officially adopted by the International Union of Pure and Applied Chemistry is summarized in Table 1.4. [Pg.25]

It would be difficult to over-estimate the extent to which the BET method has contributed to the development of those branches of physical chemistry such as heterogeneous catalysis, adsorption or particle size estimation, which involve finely divided or porous solids in all of these fields the BET surface area is a household phrase. But it is perhaps the very breadth of its scope which has led to a somewhat uncritical application of the method as a kind of infallible yardstick, and to a lack of appreciation of the nature of its basic assumptions or of the circumstances under which it may, or may not, be expected to yield a reliable result. This is particularly true of those solids which contain very fine pores and give rise to Langmuir-type isotherms, for the BET procedure may then give quite erroneous values for the surface area. If the pores are rather larger—tens to hundreds of Angstroms in width—the pore size distribution may be calculated from the adsorption isotherm of a vapour with the aid of the Kelvin equation, and within recent years a number of detailed procedures for carrying out the calculation have been put forward but all too often the limitations on the validity of the results, and the difficulty of interpretation in terms of the actual solid, tend to be insufficiently stressed or even entirely overlooked. And in the time-honoured method for the estimation of surface area from measurements of adsorption from solution, the complications introduced by... [Pg.292]

Training in each of these fields provides a unique perspective to the study of chemistry. Undergraduate chemistry courses and textbooks are more than a collection of facts they are a kind of apprenticeship. In keeping with this spirit, this text introduces the field of analytical chemistry and the unique perspectives that analytical chemists bring to the study of chemistry. [Pg.1]

The probabilities of the various dyad, triad, and other sequences that we have examined have all been described by a single probability parameter p. When we used the same kind of statistics for copolymers, we called the situation one of terminal control. We are considering similar statistics here, but the idea that the stereochemistry is controlled by the terminal unit is inappropriate. The active center of the chain end governs the chemistry of the addition, but not the stereochemistry. Neither the terminal unit nor any other repeat unit considered alone has any stereochemistry. Equations (7.62) and (7.63) merely state that an addition must be of one kind or another, but that the rates are not necessarily identical. [Pg.479]

There are three advantages to study molecular recognition on surfaces and interfaces (monolayers, films, membranes or soHds) (175) (/) rigid receptor sites can be designed (2) the synthetic chemistry may be simplified (J) the surface can be attached to transducers which makes analysis easier and may transform the molecular recognition interface to a chemical sensor. And, which is also a typical fact, this kind of molecular recognition involves outside directed interaction sites, ie, exo-receptor function (9) (see Fig. 5b). [Pg.190]

Chlorine. Nearly all chlorine compounds are readily soluble in water. As a result, the major reservoir for this element in Figure 1 is the ocean (5). Chloride, as noted earHer, is naturally present at low levels in rain and snow, especially over and near the oceans. Widespread increases in chloride concentration in mnoff in much of the United States can be attributed to the extensive use of sodium chloride and calcium chloride for deicing of streets and highways. Ref. 19 points out the importance of the increased use of deicing salt as a cause of increased chloride concentrations in streams of the northeastern United States and the role of this factor in the chloride trends in Lake Ontario. Increases in chloride concentration also can occur as a result of disposal of sewage, oil field brines, and various kinds of industrial waste. Thus, chloride concentration trends also can be considered as an index of the alternation of streamwater chemistry by human development in the industrialized sections of the world. Although chlorine is an essential element for animal nutrition, it is of less importance for other life forms. [Pg.201]


See other pages where Chemistry, kinds is mentioned: [Pg.89]    [Pg.81]    [Pg.1990]    [Pg.2185]    [Pg.2196]    [Pg.2594]    [Pg.2814]    [Pg.2814]    [Pg.713]    [Pg.16]    [Pg.31]    [Pg.20]    [Pg.179]    [Pg.658]    [Pg.21]    [Pg.65]    [Pg.85]    [Pg.29]    [Pg.5]    [Pg.339]    [Pg.415]    [Pg.348]    [Pg.366]    [Pg.427]    [Pg.253]    [Pg.390]    [Pg.58]    [Pg.47]    [Pg.82]    [Pg.96]    [Pg.22]   


SEARCH



Chemistry, kinds analytical, 7: developments

Chemistry, kinds bioorganic

Chemistry, kinds comparative

Chemistry, kinds computational

Chemistry, kinds quantum

Chemistry, kinds stereochemistry

Chemistry, kinds structural

Chemistry, kinds supramolecular

Combinatorial chemistry kinds

Supramolecular structure chemistry, kinds

© 2024 chempedia.info