Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemicals chromatography

Chemicals Manufacturing Biotechnology Equipment Pharmaceutical Ingredients Fine Chemicals Chromatography Products... [Pg.366]

Series of chromatograms showing the separation of black ink. Chromatography is an analytical process, which separates a compound into its constituent chemicals. Chromatography paper is dipped vertically in a solvent with the ink painted on it (left). Capillary action draws the solvent up through the paper (center) and dissolves the ink. As the solvent travels up the paper, it takes the various chemicals in the ink with it, separating them into a series of colored bands. (Courtesy of Andrew Lambert Photography/ Science Photo Library)... [Pg.51]

Christina A. Gendreau, M.S. Chemical Chromatography Division, Waters Corporation, Milford, Massachusetts... [Pg.311]

Characteristic Classical phyacal chromatography Analytical reaction gas chromatography (physico-chemical chromatography)... [Pg.5]

The chromatogram can finally be used as the series of bands or zones of components or the components can be eluted successively and then detected by various means (e.g. thermal conductivity, flame ionization, electron capture detectors, or the bands can be examined chemically). If the detection is non-destructive, preparative scale chromatography can separate measurable and useful quantities of components. The final detection stage can be coupled to a mass spectrometer (GCMS) and to a computer for final identification. [Pg.97]

The field of application for liquid chromatography in the petroleum world is vast separation of diesel fuel by chemical families, separation of distillation residues (see Tables 3.4 and 3.5), separation of polynuclear aromatics, and separation of certain basic nitrogen derivatives. Some examples are given later in this section. [Pg.26]

Note that in liquid phase chromatography there are no detectors that are both sensitive and universal, that is, which respond linearly to solute concentration regardless of its chemical nature. In fact, the refractometer detects all solutes but it is not very sensitive its response depends evidently on the difference in refractive indices between solvent and solute whereas absorption and UV fluorescence methods respond only to aromatics, an advantage in numerous applications. Unfortunately, their coefficient of response (in ultraviolet, absorptivity is the term used) is highly variable among individual components. [Pg.27]

Although gas chromatography can give the concentration of each component in a petroleum gas or gasoline sample, the same cannot be said for heavier cuts and one has to be satisfied with analyses by chemical family, by carbon atom distribution, or by representing the sample as a whole by an average molecule. [Pg.44]

Analysis of such cuts by spectrometry requires a preliminary separation by chemical constituents. The separation is generally done by liquid phase chromatography described in article 3.3.5. [Pg.50]

Interest in this method has decreased since advances made in gas chromatography using high-resolution capillary columns (see article 3.3.3.) now enable complete identification by individual chemical component with equipment less expensive than mass spectrometry. [Pg.51]

Other techniques for predicting the cetane number rely on chemical analysis (Glavinceski et al., 1984) (Pande et al., 1990). Gas phase chromatography can be used, as can NMR or even mass spectrometry (refer to 3.2.1.l.b and 3.2.2.2). [Pg.220]

Direct property prediction is a standard technique in drug discovery. "Reverse property prediction can be exemplified with chromatography application databases that contain separations, including method details and assigned chemical structures for each chromatogram. Retrieving compounds present in the database that are similar to the query allows the retrieval of suitable separation conditions for use with the query (method selection). [Pg.313]

The first of the two experiments given below illustrates the separation of amino-acids, now an almost classic example of the use of paper chromatography the second illustrates the separation of anthranilic acid and iV-methylanthranilic acid. Both experiments show the micro scale of the separation, and also the fact that a mixture of compounds which are chemically closely similar can be readily separated, and also can be identified by the use of controls. [Pg.51]

Chromatography is based upon the selective adsorption from solution on the active surface of certain finely divided solids. Closely related substances exhibit different powers of adsorption, so that separations, which are extremely difficult by ordinary chemical methods, may be effected by this means. When, for example, a solution of leaf pigments... [Pg.156]

Analytical separations may be classified in three ways by the physical state of the mobile phase and stationary phase by the method of contact between the mobile phase and stationary phase or by the chemical or physical mechanism responsible for separating the sample s constituents. The mobile phase is usually a liquid or a gas, and the stationary phase, when present, is a solid or a liquid film coated on a solid surface. Chromatographic techniques are often named by listing the type of mobile phase, followed by the type of stationary phase. Thus, in gas-liquid chromatography the mobile phase is a gas and the stationary phase is a liquid. If only one phase is indicated, as in gas chromatography, it is assumed to be the mobile phase. [Pg.546]

Nonvolatile analytes must be chemically converted to a volatile derivative before analysis. For example, amino acids are not sufficiently volatile to analyze directly by gas chromatography. Reacting an amino acid with 1-butanol and acetyl chloride produces an esterfied amino acid. Subsequent treatment with trifluoroacetic acid gives the amino acid s volatile N-trifluoroacetyl- -butyl ester derivative. [Pg.568]

Traditionally, chiral separations have been considered among the most difficult of all separations. Conventional separation techniques, such as distillation, Hquid—Hquid extraction, or even some forms of chromatography, are usually based on differences in analyte solubiUties or vapor pressures. However, in an achiral environment, enantiomers or optical isomers have identical physical and chemical properties. The general approach, then, is to create a "chiral environment" to achieve the desired chiral separation and requires chiral analyte—chiral selector interactions with more specificity than is obtainable with conventional techniques. [Pg.60]

Determination of DMAC in Air. DMAC can be measured in air by passing a known amount of sample through water in a gas-scmbbing vessel and then analyzing the solution either chemically or by gas chromatography. [Pg.84]

Chemical assay is preferably performed by gas—hquid chromatography (glc) or by the conventional methods for determination of unsaturation such as bromination or addition of mercaptan, sodium bisulfite, or mercuric acetate. [Pg.156]

Ion exchange (qv see also Chromatography) is an important procedure for the separation and chemical identification of curium and higher elements. This technique is selective and rapid and has been the key to the discovery of the transcurium elements, in that the elution order and approximate peak position for the undiscovered elements were predicted with considerable confidence (9). Thus the first experimental observation of the chemical behavior of a new actinide element has often been its ion-exchange behavior—an observation coincident with its identification. Further exploration of the chemistry of the element often depended on the production of larger amounts by this method. Solvent extraction is another useful method for separating and purifying actinide elements. [Pg.214]

Volatile impurities, eg, F2, HF, CIF, and CI2, in halogen fluoride compounds are most easily deterrnined by gas chromatography (109—111). The use of Ftoroplast adsorbents to determine certain volatile impurities to a detection limit of 0.01% has been described (112—114). Free halogen and haHde concentrations can be deterrnined by wet chemical analysis of hydrolyzed halogen fluoride compounds. [Pg.187]

A potentially general method of identifying a probe is, first, to purify a protein of interest by chromatography (qv) or electrophoresis. Then a partial amino acid sequence of the protein is deterrnined chemically (see Amino acids). The amino acid sequence is used to predict likely short DNA sequences which direct the synthesis of the protein sequence. Because the genetic code uses redundant codons to direct the synthesis of some amino acids, the predicted probe is unlikely to be unique. The least redundant sequence of 25—30 nucleotides is synthesized chemically as a mixture. The mixed probe is used to screen the Hbrary and the identified clones further screened, either with another probe reverse-translated from the known amino acid sequence or by directly sequencing the clones. Whereas not all recombinant clones encode the protein of interest, reiterative screening allows identification of the correct DNA recombinant. [Pg.231]


See other pages where Chemicals chromatography is mentioned: [Pg.77]    [Pg.183]    [Pg.578]    [Pg.773]    [Pg.61]    [Pg.150]    [Pg.276]    [Pg.331]    [Pg.366]    [Pg.43]    [Pg.54]    [Pg.55]    [Pg.57]    [Pg.142]    [Pg.53]    [Pg.139]    [Pg.444]    [Pg.276]    [Pg.446]    [Pg.486]    [Pg.530]    [Pg.532]    [Pg.533]    [Pg.182]    [Pg.15]    [Pg.287]    [Pg.378]   
See also in sourсe #XX -- [ Pg.71 ]




SEARCH



© 2024 chempedia.info