Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemically reactive types

Although all real surfaces have steps, they are not usually labelled as vicinal unless they are purposely misoriented in order to create a regular array of steps. Vicinal surfaces have unique properties, which make them useful for many types of experiments. For example, steps are often more chemically reactive than terraces, so that vicinal surfaces provide a means for investigating reactions at step edges. Also, it is possible to grow nanowires by deposition of a metal onto a surface of another metal in such a way that the deposited metal diflfiises to and attaches at the step edges [3]. [Pg.287]

Checklists. A checklist is simply a detailed Hst of safety considerations. The purpose of this Hst is to provide a reminder to safety issues such as chemical reactivity, fire and explosion hazards, toxicity, and so forth. This type of checklist is used to determine hazards, and differs from a procedure checklist which is used to ensure that the correct procedure is followed. [Pg.470]

Most general-purpose release agents have been developed for this market in part because of their low toxicity and chemical inertness and do not usually present health and safety problems. Some of the solvent dispersions require appropriate care in handling volatile solvents, and many supphers are offering water-based alternatives. Some of the sohds, particularly finely divided hydrophobic sohds, can also present inhalation problems. Some of the metallic soaps are toxic, although there is a trend away from the heavier, more toxic metals such as lead. The reactive type of release coating with monomers, prepolymers, and catalysts often presents specific handling difficulties. The potential user with health and safety questions is advised to consult the manufacturer directly. [Pg.102]

Adsorption and Surface Chemical Grafting. As with siHca and many other siHcate minerals, the surface of asbestos fibers exhibit a significant chemical reactivity. In particular, the highly polar surface of chrysotile fibers promotes adsorption (physi- or chemisorption) of various types of organic or inorganic substances (22). Moreover, specific chemical reactions can be performed with the surface functional groups (OH groups from bmcite or exposed siHca). [Pg.351]

An important use of bromine compounds is in the production of flame retardants (qv). These are of the additive-type, which is physically blended into polymers, and the reactive-type, which chemically reacts during the formation of the polymer. Bromine compounds are also used in fire extinguishers. Brominated polymers are used in flame retardant appHcations and bromine-containing epoxy sealants are used in semiconductor devices (see... [Pg.289]

An overview of some basic mathematical techniques for data correlation is to be found herein together with background on several types of physical property correlating techniques and a road map for the use of selected methods. Methods are presented for the correlation of observed experimental data to physical properties such as critical properties, normal boiling point, molar volume, vapor pressure, heats of vaporization and fusion, heat capacity, surface tension, viscosity, thermal conductivity, acentric factor, flammability limits, enthalpy of formation, Gibbs energy, entropy, activity coefficients, Henry s constant, octanol—water partition coefficients, diffusion coefficients, virial coefficients, chemical reactivity, and toxicological parameters. [Pg.232]

Turning to non-metallic catalysts, photoluminescence studies of alkaline-earth oxides in dre near-ultra-violet region show excitation of electrons corresponding to duee types of surface sites for the oxide ions which dominate the surface sUmcture. These sites can be described as having different cation co-ordination, which is normally six in the bulk, depending on the surface location. Ions on a flat surface have a co-ordination number of 5 (denoted 5c), those on the edges 4 (4c), and dre kiirk sites have co-ordination number 3 (3c). The latter can be expected to have higher chemical reactivity than 4c and 5c sites, as was postulated for dre evaporation mechanism. [Pg.124]

Theories of molecular stracture attempt to describe the nature of chemical bonding both qualitatively and quantitatively. To be useful to chemists, the bonding theories must provide insight into the properties and reactivity of molecules. The stractural theories and concepts that are most useful in organic chemistry are the subject of this chapter. Our goal is to be able to relate molecular stracture, as depicted by stractural formulas and other types of stractural information, such as bond lengths and electronic distributions, to the chemical reactivity and physical properties of molecules. [Pg.2]

A special type of substituent effect which has proved veiy valuable in the study of reaction mechanisms is the replacement of an atom by one of its isotopes. Isotopic substitution most often involves replacing protium by deuterium (or tritium) but is applicable to nuclei other than hydrogen. The quantitative differences are largest, however, for hydrogen, because its isotopes have the largest relative mass differences. Isotopic substitution usually has no effect on the qualitative chemical reactivity of the substrate, but often has an easily measured effect on the rate at which reaction occurs. Let us consider how this modification of the rate arises. Initially, the discussion will concern primary kinetic isotope effects, those in which a bond to the isotopically substituted atom is broken in the rate-determining step. We will use C—H bonds as the specific topic of discussion, but the same concepts apply for other elements. [Pg.222]

Chemical Reactivity - Reactivity with Water No reaction Reactivity with Common Materials Softens and dissolves many types of plastics Stability During Transport Stable Neutralizing Agents for Acids and Caustics Not pertinent Polymerization Not pertinent Inhibitor of Polymerization Not pertinent. [Pg.213]

Many biological processes involve an "association" between two species in a step prior to some subsequent transformation. This association can take many forms. It can be a weak association of the attractive van der Waals type, or a stronger interaction such as a hydrogen bond. It can be an electrostatic attraction between a positively charged atom of one molecule and a negatively charged atom of another. Covalent bond formation between two species of complementary chemical reactivity represents an extreme kind of association. It often occurs in biological processes in which aldehydes or ketones react with amines via imine intermediates. [Pg.728]

When thinking about chemical reactivity, chemists usually focus their attention on bonds, the covalent interactions between atoms within individual molecules. Also important, hotvever, particularly in large biomolecules like proteins and nucleic acids, are a variety of interactions between molecules that strongly affect molecular properties. Collectively called either intermolecular forces, van der Waals forces, or noncovalent interactions, they are of several different types dipole-dipole forces, dispersion forces, and hydrogen bonds. [Pg.61]

The physicochemical properties of carbonaceous materials can be altered in a predictable manner by different types of treatments. For example, heat treatment of soft carbons, depending on the temperature, leads to an increase in the crystallite parameters, La and Lc and a decrease in the d(0 0 2) spacing. Besides these physical changes in the carbon material, other properties such as the electrical conductivity and chemical reactivity are changed. A review of the electronic properties of graphite and other types of carbonaceous materials is presented by Spain [3],... [Pg.235]

Methods are used to produce the more costly rapid prototypes include those that produce models within a few hours. They include photopolymerization, laser tooling, and their modifications. The laser sintering process uses powdered TP rather than chemically reactive liquid photopolymer used in stereolithography. Models are usually made from certain types of plastics. Also used in the different processes are metals (steel, hard alloys, copper-based alloys, and powdered metals). With powder metal molds, they can be used as inserts in a mold ready to produce prototype products. These systems enable having precise control over the process and constructing products with complex geometries. [Pg.178]

Brockway, L.O. The Structures of the Fluorochloromethanes and the Effect of Bond Type on Chemical Reactivity J. Phys. Chem. 1937, 41, 185-195. [Pg.341]

The main factors determining the reactivity of these siloxane oligomers towards other reactants are the type and nature of the terminal functional groups. Due to the fundamental differences in their structures, chemical reactivities and overall properties,... [Pg.8]

The type and nature of the (R) group also has a major influence on the chemical reactivity of the functional group (X) towards the others. Since (R) can be aliphatic or aromatic in nature, the reactivity of the same end group (e.g. —OH), will be quite different depending on the type of the (R) group that is is linked to (e.g. —CH2—OH... [Pg.12]

Thus, the chemical reactivity of the elements in seawater is reflected by the residence time. It is important to note, however, that while residence times tell us something about the relative reactivities, they also tell us nothing about the nature of the reactions. The best source of clues for imderstanding these reactions is to study the shape of dissolved profiles of the different elements. When we do this we find that there are six main characteristic types of profiles as described in Table 10-8. Notice that most of these reactions occur at the phase discontinuities between the atmosphere, biosphere, hydrosphere, and lithosphere. [Pg.258]


See other pages where Chemically reactive types is mentioned: [Pg.198]    [Pg.194]    [Pg.57]    [Pg.372]    [Pg.144]    [Pg.77]    [Pg.198]    [Pg.194]    [Pg.57]    [Pg.372]    [Pg.144]    [Pg.77]    [Pg.934]    [Pg.172]    [Pg.388]    [Pg.129]    [Pg.262]    [Pg.59]    [Pg.248]    [Pg.222]    [Pg.3]    [Pg.691]    [Pg.25]    [Pg.184]    [Pg.15]    [Pg.262]    [Pg.381]    [Pg.70]    [Pg.239]    [Pg.103]    [Pg.543]    [Pg.121]    [Pg.227]    [Pg.39]    [Pg.244]   
See also in sourсe #XX -- [ Pg.77 ]




SEARCH



Chemical reactivity hazard types

© 2024 chempedia.info