Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical vapor deposition oxide

Numerous ceramics are deposited via chemical vapor deposition. Oxide, carbide, nitride, and boride films can all be produced from gas phase precursors. This section gives details on the production-scale reactions for materials that are widely produced. In addition, a survey of the latest research including novel precursors and chemical reactions is provided. The discussion begins with the mature technologies of silicon dioxide, aluminum oxide, and silicon nitride CVD. Then the focus turns to the deposition of thin films having characteristics that are attractive for future applications in microelectronics, micromachinery, and hard coatings for tools and parts. These materials include aluminum nitride, boron nitride, titanium nitride, titanium dioxide, silicon carbide, and mixed-metal oxides such as those of the perovskite structure and those used as high To superconductors. [Pg.168]

Chemical Vapor Deposition. In chemical vapor deposition (CVD), often referred to as vapor transport, the desired constituent(s) to be deposited are ia the form of a compound existing as a vapor at an appropriate temperature. This vapor decomposes with or without a reducing or oxidizing agent at the substrate— vapor interface for film growth. CVD has been used successfully for preparing garnet and ortho ferrite films (24,25). Laser-assisted CVD is also practiced. [Pg.391]

Dielectric Deposition Systems. The most common techniques used for dielectric deposition include chemical vapor deposition (CVD), sputtering, and spin-on films. In a CVD system thermal or plasma energy is used to decompose source molecules on the semiconductor surface (189). In plasma-enhanced CVD (PECVD), typical source gases include silane, SiH, and nitrous oxide, N2O, for deposition of siUcon nitride. The most common CVD films used are siUcon dioxide, siUcon nitride, and siUcon oxynitrides. [Pg.384]

In the modified chemical vapor deposition (MCVD) technique, the reactants are deposited on the inside of a rotating siUca tube. The hoUow tube is heated from the outside by a moving oxyhydrogen torch. The oxide soot condenses onto the tube walls ahead of the burner, and the soot is then sintered into a glassy layer as the burner passes over it. When deposition is complete, the tube and its contents are collapsed to form a soHd preform rod. [Pg.335]

In plasma chemical vapor deposition (PCVD), the starting materials are typically SiCl, O2, 2 6 GeCl (see Plasma technology). Plasma chemical vapor deposition is similar to MCVD in that the reactants are carried into a hoUow siUca tube, but PCVD uses a moving microwave cavity rather than a torch. The plasma formed inside the microwave cavity results in the deposition of a compact glass layer along the inner wall of the tube. The temperatures involved in PCVD are lower than those in MCVD, and no oxide soots are formed. Also, the PCVD method is not affected by the heat capacities or thermal conductivities of the deposits. [Pg.335]

In a chemical vapor deposition (CVD) variant of conventional powder metallurgy processing, fine chromium powder is obtained by hydrogen reduction of Crl2 and simultaneously combined with fine thorium(IV) oxide [1314-20-17, H1O2, particles. This product is isostaticaHy hot pressed to 70 MPa (700 atm) and 1100°C for 2 h. Compacts are steel clad and hot roUed to sheets (24). [Pg.119]

Figure 1 shows a segment of the FTIR absorbance spectrum of a thin film of the oxide of silicon deposited by chemical vapor deposition techniques. In this film, sil-... [Pg.420]

Chemical vapor deposition (C VD) is a versatile process suitable for the manufacturing of coatings, powders, fibers, and monolithic components. With CVD, it is possible to produce most metals, many nonmetallic elements such as carbon and silicon as well as a large number of compounds including carbides, nitrides, oxides, intermetallics, and many others. This technology is now an essential factor in the manufacture of semiconductors and other electronic components, in the coating of tools, bearings, and other wear-resistant parts and in many optical, optoelectronic and corrosion applications. The market for CVD products in the U.S. and abroad is expected to reach several billions dollars by the end of the century. [Pg.25]

Borman, C. G, and Gordon, R. G., Reactive Pathways in the Chemical Vapor Deposition of Tin Oxide Films by Tetramethyltin Oxidation, /. Electrochem. Soc., 136-12 3820-3828 (1989)... [Pg.106]

Textured Tin Oxide Films Produced by Atmospheric Pressure Chemical Vapor Deposition from Tetramethyltin and Their Usefulness in Producing Light Trapping in Thin-Film Amorphous Silicon Solar Energy Mater., 18 263-281 (1989)... [Pg.106]

Balog, M., Schieber, M., Patai, S., andMichman, M., Thin Films of Metal Oxides on Silicon by Chemical Vapor Deposition with Organometallic Compounds, J. of Crystal Growth, 17 298-301 (1972)... [Pg.106]

Mantyla, T., Vuoristo, P., and Kettunen, P., Chemical Vapor Deposition of Plasma Sprayed Oxide Coatings, Thin Solid Films, 118(4) 437-444(24Aug. 1984)... [Pg.318]

Inside" processes—such as modified chemical vapor deposition (MCVD) and plasma chemical vapor deposition (PCVD)—deposit doped silica on the interior surface of a fused silica tube. In MCVD, the oxidation of the halide reactants is initiated by a flame that heats the outside of the tube (Figure 4.8). In PCVD, the reaction is initiated by a microwave plasma. More than a hundred different layers with different refractive indexes (a function of glass composition) may be deposited by either process before the tube is collapsed to form a glass rod. [Pg.57]

Characteristics of Tin Oxide Thin Films on a Poly Ethylene Terephthalate Substrate Prepared by Electron Cyclotron Resonance-Metal Organic Chemical Vapor Deposition... [Pg.385]

Chemical Vapor Deposition- Deposition of silicon oxide films is accomplished by CVD equipment. Either plasma CVD or ozone oxidation is used. Blanket tungsten films are also deposited by CVD equipment to create contact and via plugs. Polysilicon and silicon nitride films are deposited in hot-wall furnaces. TiN diffusion barrier films are deposited by either sputtering or CVD, the latter giving superior step coverage. [Pg.327]

The most intensive development of the nanoparticle area concerns the synthesis of metal particles for applications in physics or in micro/nano-electronics generally. Besides the use of physical techniques such as atom evaporation, synthetic techniques based on salt reduction or compound precipitation (oxides, sulfides, selenides, etc.) have been developed, and associated, in general, to a kinetic control of the reaction using high temperatures, slow addition of reactants, or use of micelles as nanoreactors [15-20]. Organometallic compounds have also previously been used as material precursors in high temperature decomposition processes, for example in chemical vapor deposition [21]. Metal carbonyls have been widely used as precursors of metals either in the gas phase (OMCVD for the deposition of films or nanoparticles) or in solution for the synthesis after thermal treatment [22], UV irradiation or sonolysis [23,24] of fine powders or metal nanoparticles. [Pg.234]


See other pages where Chemical vapor deposition oxide is mentioned: [Pg.9]    [Pg.417]    [Pg.146]    [Pg.155]    [Pg.9]    [Pg.417]    [Pg.146]    [Pg.155]    [Pg.191]    [Pg.253]    [Pg.253]    [Pg.217]    [Pg.257]    [Pg.313]    [Pg.314]    [Pg.137]    [Pg.27]    [Pg.471]    [Pg.522]    [Pg.287]    [Pg.469]    [Pg.313]    [Pg.335]    [Pg.120]    [Pg.141]    [Pg.320]    [Pg.56]    [Pg.85]    [Pg.204]    [Pg.361]    [Pg.385]    [Pg.410]   
See also in sourсe #XX -- [ Pg.287 , Pg.288 , Pg.289 ]




SEARCH



Chemical oxidants

Chemical oxidation

Chemical oxidizers

Chemical vapor deposition

Chemicals oxidizing

© 2024 chempedia.info