Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical reactions, vibrational spectra

The most widely employed optical method for the study of chemical reaction dynamics has been laser-induced fluorescence. This detection scheme is schematically illustrated in the left-hand side of figure B2.3.8. A tunable laser is scanned tlnough an electronic band system of the molecule, while the fluorescence emission is detected. This maps out an action spectrum that can be used to detemiine the relative concentrations of the various vibration-rotation levels of the molecule. [Pg.2071]

In studies of molecular dynamics, lasers of very short pulse lengths allow investigation by laser-induced fluorescence of chemical processes that occur in a picosecond time frame. This time period is much less than the lifetimes of any transient species that could last long enough to yield a measurable vibrational spectrum. Such measurements go beyond simple detection and characterization of transient species. They yield details never before available of the time behavior of species in fast reactions, such as temporal and spatial redistribution of initially localized energy in excited molecules. Laser-induced fluorescence characterizes the molecular species that have formed, their internal energy distributions, and their lifetimes. [Pg.259]

Despite the enormous impact that scanning probe methods have had on our understanding of reactions at oxide surfaces, both STM and AFM suffer from the lack of chemical specificity. The application of STM-inelastic electron tunneling spectroscopy is a potential solution as it can be used to measure the vibrational spectrum of individual molecules at the surface [69, 70]. [Pg.236]

Sensitivity and complexity represent challenges for ATR spectroscopy of catalytic solid liquid interfaces. The spectra of the solid liquid interface recorded by ATR can comprise signals from dissolved species, adsorbed species, reactants, reaction intermediates, products, and spectators. It is difficult to discriminate between the various species, and it is therefore often necessary to apply additional specialized techniques. If the system under investigation responds reversibly to a periodic stimulation such as a concentration modulation, then a PSD can be applied, which markedly enhances sensitivity. Furthermore, the method discriminates between species that are affected by the stimulation and those that are not, and it therefore introduces some selectivity. This capability is useful for discrimination between spectator species and those relevant to the catalysis. As with any vibrational spectroscopy, the task of identification of a species on the basis of its vibrational spectrum can be difficult, possibly requiring an assist from quantum chemical calculations. [Pg.280]

Infrared and Raman spectroscopy are in current use fo r elucidating the molecular structures of nucleic acids. The application of infrared spectroscopy to studies of the structure of nucleic acids has been reviewed,135 as well as of Raman spectroscopy.136 It was noted that the assignments are generally based on isotopic substitution, or on comparison of the spectrum of simple molecules that are considered to form a part of the polynucleotide chain to that of the nucleic acid. The vibrational spectra are generally believed to be a good complementary technique in the study of chemical reactions, as in the study76 of carbohydrate complexation with boric acid. In this study, the i.r. data demonstrated that only ribose forms a solid complex with undissociated H3B03, and that the complexes are polymeric. [Pg.30]

Figure 3.10 The electronic transitions [absorption in (a)] of small molecules show vibrational and rotational lines in addition to the purely electronic spectrum, (b) Luminescence emission is resonance fluorescence (f), and chemical reactions (R) can originate from several excited states... Figure 3.10 The electronic transitions [absorption in (a)] of small molecules show vibrational and rotational lines in addition to the purely electronic spectrum, (b) Luminescence emission is resonance fluorescence (f), and chemical reactions (R) can originate from several excited states...
Temperature information from CARS spectra derives from spectral shapes either of the 2-branches or of the pure rotational CARS spectra of the molecular constituents. In combustion research it is most common to perform thermometry from nitrogen since it is the dominant constituent and present everywhere in large concentration despite the extent of chemical reaction. The 2-branch of nitrogen changes its shape due to the increased contribution of higher rotational levels which become more populated when the temperature increases. Figure 6.1-21 displays a calculated temperature dependence of the N2 CARS spectrum for experimental parameters typically used in CARS thermometry (Hall and Eckbreth, 1984). Note that the wavenumber scale corresponds to the absolute wavenumber value for the 2320 cm 2-branch of N2 when excited with the frequency doubled Nd.YAG laser at 532 nm ( 18796 cm ), i. e. = 18796 -1- 2320 = 21116 cm. The bands lower than about 21100 cm are due to the rotational structure of the first vibrational hot band. [Pg.503]

A preliminary report and photograph of the spectrum attributed to this radical have been given elsewhere. It appears whenever chlorine is photolyzed in the presence of oxygen and has a half-life of a few milliseconds. The simple vibrational structure strongly suggests a diatomic molecule and, under the circumstances, the only possibility is the CIO radical whose occurrence in chemical reactions has frequently been postulated. Very little is known about the diatomic compounds of Group 6 of the periodic table with Group 7 and the interpretation of this spectrum is therefore of some interest. [Pg.40]

As we have seen, the expressions for the rate constant obtained for different models describing the lattice vibrations of a solid are considerably different. At the same time in a real situation the reaction rate is affected by different vibration types. In low-temperature solid-state chemical reactions one of the reactants, as a rule, differs significantly from the molecules of the medium in mass and in the value of interaction with the medium. Consequently, an active particle involved in reaction behaves as a point defect (in terms of its effect on the spectrum and vibration dynamics of a crystal lattice). Such a situation occurs, for instance, in irradiated molecular crystals where radicals (defects) are formed due to irradiation. Since a defect is one of the reactants and thus lattice regularity breakdown is within the reaction zone, the defect of a solid should be accounted for even in cases where the total number of radiation (or other) defects is small. [Pg.399]


See other pages where Chemical reactions, vibrational spectra is mentioned: [Pg.584]    [Pg.1968]    [Pg.2131]    [Pg.1286]    [Pg.423]    [Pg.395]    [Pg.147]    [Pg.35]    [Pg.156]    [Pg.132]    [Pg.129]    [Pg.142]    [Pg.1276]    [Pg.13]    [Pg.125]    [Pg.107]    [Pg.52]    [Pg.231]    [Pg.122]    [Pg.209]    [Pg.153]    [Pg.107]    [Pg.210]    [Pg.94]    [Pg.663]    [Pg.415]    [Pg.6381]    [Pg.630]    [Pg.356]    [Pg.429]    [Pg.202]    [Pg.611]    [Pg.201]    [Pg.538]    [Pg.106]    [Pg.413]    [Pg.294]    [Pg.2]    [Pg.423]    [Pg.151]    [Pg.17]    [Pg.363]   


SEARCH



Chemical reactions, vibrational spectra study

Spectrum reaction

© 2024 chempedia.info