Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical reactions activated complexes

In summary, the degradation of the PFPE lubricants is a complex process involving several mechanisms, including thermal decomposition, catalytic decomposition, tribo-chemical reactions activated by exoelectron emission, and mechanical scission, which comes into the play simultaneously. [Pg.231]

Activated Complex momentary intermediate arrangement of atoms when reactants are converted into products in a chemical reaction, also called transition state Activation Energy minimum energy needed to initiate a chemical reaction Active how easily a metal is oxidized Activity Series a ranking of elements in order of their ability to reduce or oxidize another element... [Pg.335]

The transition state model considers a chemical reaction as an equilibrium between the ground state of the reactants and their state on the top of the potential barrier of reaction (activated complex) [6,7],... [Pg.112]

Large scale motions have been observed at the interface between an aqueous solution of a long chain alkyltrimethyl ammonium halo-genide and a nitrobenzene solution of picric acid in proportions far removed from the equilibrium partition state. These motions differ from the usual Marangoni effect because the desorption of the surface active material, required for sustained movements, depends on a chemical interfacial reaction. Such a reaction cou-pled to the transfer processes permits an instability to occur without any chemical reactions with complex kinetics. [Pg.233]

Nevertheless, cluster models are still broadly used with models with up to 200 atoms, placed in a dielectric cavity and treated at the highest possible QM level, which so far has mainly meant hybrid density functional theory (DFT) [40-42]. The most common application of these models is on systems where the chemical reaction implies complex electronic states as the ones appeared in enzymes containing transition metals where more than one electronic state is involved and high level QM methods are required to describe the reaction. Nevertheless, due to the computational cost, such studies have embraced topics devoted to the modeUing of the first coordination sphere of the active site to perform an exploration of the molecular mechanism solving problems of stereoselectivity [42], up to the... [Pg.388]

Eyring H 1934 The activated complex in chemical reactions J. Chem. Phys. 3 107... [Pg.896]

Eyring H 1935 The activated complex in chemical reactions J. Chem. Phys. 3 107-15 Hofacker L 1963 Quantentheorie chemischer Reaktionen Z. Naturf. A 18 607-19 Robinson P J and Holbrook K A 1972 Unimolecular Reactions (New York Wiley)... [Pg.1092]

In the case of the retro Diels-Alder reaction, the nature of the activated complex plays a key role. In the activation process of this transformation, the reaction centre undergoes changes, mainly in the electron distributions, that cause a lowering of the chemical potential of the surrounding water molecules. Most likely, the latter is a consequence of an increased interaction between the reaction centre and the water molecules. Since the enforced hydrophobic effect is entropic in origin, this implies that the orientational constraints of the water molecules in the hydrophobic hydration shell are relieved in the activation process. Hence, it almost seems as if in the activated complex, the hydrocarbon part of the reaction centre is involved in hydrogen bonding interactions. Note that the... [Pg.168]

The activated complex theory has been developed extensively for chemical reactions as well as for deformation processes. The full details of the theory are not necessary for us. Instead, it is sufficient to note that k can be written as... [Pg.91]

Cd(OH)2 is much more basic than Zn(OH)2 and is soluble ia 5 NaOH at 1.3 g/L as the anionic complex tetrahydroxocadmate [26214-93-7] Cd(OH) 4. Technical-grade Cd(OH)2 sold for 74/kg ia 1991 and its most important utihty is as the active anode ia rechargeable Ni—Cd and Ag—Cd storage batteries. The chemical reaction responsible for the charge—discharge of the batteries is (35) ... [Pg.395]

The possible mechanism of ionization, fragmentation of studied compound as well as their desoi ption by laser radiation is discussed. It is shown that the formation of analyte ions is a result of a multi stage complex process included surface activation by laser irradiation, the adsoi ption of neutral analyte and proton donor molecules, the chemical reaction on the surface with proton or electron transfer, production of charged complexes bonded with the surface and finally laser desoi ption of such preformed molecules. [Pg.103]

A more general, and for the moment, less detailed description of the progress of chemical reactions, was developed in the transition state theory of kinetics. This approach considers tire reacting molecules at the point of collision to form a complex intermediate molecule before the final products are formed. This molecular species is assumed to be in thermodynamic equilibrium with the reactant species. An equilibrium constant can therefore be described for the activation process, and this, in turn, can be related to a Gibbs energy of activation ... [Pg.47]

These examples illustrate the relationship between kinetic results and the determination of reaction mechanism. Kinetic results can exclude from consideration all mechanisms that require a rate law different from the observed one. It is often true, however, that related mechanisms give rise to identical predicted rate expressions. In this case, the mechanisms are kinetically equivalent, and a choice between them is not possible on the basis of kinetic data. A further limitation on the information that kinetic studies provide should also be recognized. Although the data can give the composition of the activated complex for the rate-determining step and preceding steps, it provides no information about the structure of the intermediate. Sometimes the structure can be inferred from related chemical experience, but it is never established by kinetic data alone. [Pg.199]

The photochemistry of transition metal 1,3-diketone chelate complexes has been known for some time [30,31], and their photophysical and photochemical properties and photocatalytic activity in different chemical reactions were reviewed in 1990 by Marciniak and Buono—Core [32]. Further discussion on the photochemistry of meta] chelate will not take place here since this subject is out of the scope of this chapter. [Pg.247]

Figure 8-8 shows the analogous situation for a chemical reaction. The solid curve shows the activation energy barrier which must be surmounted for reaction to take place. When a catalyst is added, a new reaction path is provided with a different activation energy barrier, as suggested by the dashed curve. This new reaction path corresponds to a new reaction mechanism that permits the reaction to occur via a different activated complex. Hence, more particles can get over the new, lower energy barrier and the rate of the reaction is increased. Note that the activation energy for the reverse reaction is lowered exactly the same amount as for the forward reaction. This accounts for the experimental fact that a catalyst for a reaction has an equal effect on the reverse reaction that is, both reactions are speeded up by the same factor. If a catalyst doubles the rate in one direction, it also doubles the rate in the reverse direction. [Pg.137]

The influence of barriers on thermodynamic properties must have importance in determining the rates of various chemical reactions. It seems certain that the activated complex for many reactions will involve the possibility of restricted rotation and that the thermodynamic properties of the complex will therefore be in part determined by the magnitude of the barriers. Whereas at the moment there is no direct way of determining such barriers, any general principles obtained for stable molecules should ultimately be applicable to the activated state. One might then hope to be able to estimate the barriers and the reaction rates a priori. [Pg.368]

The steroid ring structure is complex and contains many chiral carbons (for example at positions 5, 8, 9,10,13,14 and 17) thus many optical isomers are possible. (The actual number of optical isomers is given by 2" where n = the number of chiral carbons). From your knowledge of biochemistry you should have realised that only one of these optical isomers is likely to be biologically active. Synthesis of such a complex chemical structure to produce a single isomeric form is extremely difficult, especially when it is realised that many chemical reactions lead to the formation of racemic mixtures. Thus, for complete chemical synthesis, we must anticipate that... [Pg.297]

In this book the discussion has been restricted to the structure of the normal states of molecules, with little reference to the great part of chemistry dealing with the mechanisms and rates of chemical reactions. It seems probable that the concept of resonance can be applied very effectively in this field. The activated complexes which represent intermediate stages in chemical reactions are, almost without exception, unstable molecules which resonate among several valence-bond structures. Thus, according to the theory of Lewis, Olson, and Polanyi, Walden inversion occurs in the hydrolysis of an alkyl halide by the following mechanism ... [Pg.253]

The activated complex can be described as involving resonance of the fourth bond of carbon between the hydroxyl and iodine ions. Some very interesting rough quantum-mechanical calculations bearing on the theory of chemical reactions have been made of Eyring and Polanyi and their collaborators. It is to be hoped that the quantitative treatments can be made more precise and more-reliable but before this can be done effectively there must take place the extensive development of the qualitative theory of chemical reactions, probably in terms of resonance. [Pg.253]

In addition to chemical reactions, the isokinetic relationship can be applied to various physical processes accompanied by enthalpy change. Correlations of this kind were found between enthalpies and entropies of solution (20, 83-92), vaporization (86, 91), sublimation (93, 94), desorption (95), and diffusion (96, 97) and between the two parameters characterizing the temperature dependence of thermochromic transitions (98). A kind of isokinetic relationship was claimed even for enthalpy and entropy of pure substances when relative values referred to those at 298° K are used (99). Enthalpies and entropies of intermolecular interaction were correlated for solutions, pure liquids, and crystals (6). Quite generally, for any temperature-dependent physical quantity, the activation parameters can be computed in a formal way, and correlations between them have been observed for dielectric absorption (100) and resistance of semiconductors (101-105) or fluidity (40, 106). On the other hand, the isokinetic relationship seems to hold in reactions of widely different kinds, starting from elementary processes in the gas phase (107) and including recombination reactions in the solid phase (108), polymerization reactions (109), and inorganic complex formation (110-112), up to such biochemical reactions as denaturation of proteins (113) and even such biological processes as hemolysis of erythrocytes (114). [Pg.418]


See other pages where Chemical reactions activated complexes is mentioned: [Pg.342]    [Pg.212]    [Pg.31]    [Pg.604]    [Pg.778]    [Pg.895]    [Pg.336]    [Pg.23]    [Pg.480]    [Pg.383]    [Pg.400]    [Pg.122]    [Pg.97]    [Pg.101]    [Pg.73]    [Pg.206]    [Pg.481]    [Pg.4]    [Pg.830]    [Pg.1119]    [Pg.200]    [Pg.19]    [Pg.3]    [Pg.148]    [Pg.182]    [Pg.191]    [Pg.350]    [Pg.168]    [Pg.169]   
See also in sourсe #XX -- [ Pg.448 ]




SEARCH



Chemical activation reactions

Chemical activity

Chemical complexation

Chemical complexes

Chemical complexity

Chemical reactions complexity

Chemically active

Complexation, chemical reactions

Complexes chemical reaction

Reactions activated complex

© 2024 chempedia.info