Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical reaction composite

Figure 4.18. MVC with Chemical Reaction - Composition Profiles... Figure 4.18. MVC with Chemical Reaction - Composition Profiles...
The physical chemist is very interested in kinetics—in the mechanisms of chemical reactions, the rates of adsorption, dissolution or evaporation, and generally, in time as a variable. As may be imagined, there is a wide spectrum of rate phenomena and in the sophistication achieved in dealing wifli them. In some cases changes in area or in amounts of phases are involved, as in rates of evaporation, condensation, dissolution, precipitation, flocculation, and adsorption and desorption. In other cases surface composition is changing as with reaction in monolayers. The field of catalysis is focused largely on the study of surface reaction mechanisms. Thus, throughout this book, the kinetic aspects of interfacial phenomena are discussed in concert with the associated thermodynamic properties. [Pg.2]

When a chemical reaction takes place at the solid surface, we expect a smooth variation in gas composition in the macropores on a scale comparable with the whole pellet, provided the reaction rate is not too high. [Pg.79]

The differential material balances contain a large number of physical parameters describing the structure of the porous medium, the physical properties of the gaseous mixture diffusing through it, the kinetics of the chemical reaction and the composition and pressure of the reactant mixture outside the pellet. In such circumstances it Is always valuable to assemble the physical parameters into a smaller number of Independent dimensionless groups, and this Is best done by writing the balance equations themselves in dimensionless form. The relevant equations are (11.20), (11.21), (11.22), (11.23), (11.16) and the expression (11.27) for the effectiveness factor. [Pg.122]

The thermal degradation of mixtures of the common automotive plastics polypropylene, ABS, PVC, and polyurethane can produce low molecular weight chemicals (57). Composition of the blend affected reaction rates. Sequential thermolysis and gasification of commingled plastics found in other waste streams to produce a syngas containing primarily carbon monoxide and hydrogen has been reported (58). [Pg.232]

Calcination. Calcination involves a low (<1000° C) temperature soHd-state chemical reaction of the raw materials to form the desired final composition and stmcture such as perovskite for BaTiO and PZT. It can be carried out by placing the mixed powders in cmcibles in a batch or continuous kiln. A rotary kiln also can be used for this purpose to process continuously. A sufficiendy uniform temperature has to be provided for the mixed oxides, because the thermal conductivity of powdered materials is always low. [Pg.205]

Because they are weak acids or bases, the iadicators may affect the pH of the sample, especially ia the case of a poorly buffered solution. Variations in the ionic strength or solvent composition, or both, also can produce large uncertainties in pH measurements, presumably caused by changes in the equihbria of the indicator species. Specific chemical reactions also may occur between solutes in the sample and the indicator species to produce appreciable pH errors. Examples of such interferences include binding of the indicator forms by proteins and colloidal substances and direct reaction with sample components, eg, oxidising agents and heavy-metal ions. [Pg.468]

If the gas has the correct composition, the carbon content at the surface increases to the saturation value, ie, the solubiUty limit of carbon in austenite (Fig. 2), which is a function of temperature. Continued addition of carbon to the surface increases the carbon content curve. The surface content is maintained at this saturation value (9) (Fig. 5). The gas carburizing process is controlled by three factors (/) the thermodynamics of the gas reactions which determine the equiUbrium carbon content at the surface (2) the kinetics of the chemical reactions which deposit the carbon and (J) the diffusion of carbon into the austenite. [Pg.213]

A pyrotechnic composition contains one or more oxidizers in combination with one or more fuels. Oxidizers used in pyrotechnics, such as potassium nitrate, KNO, are soflds at room temperature and release oxygen when heated to elevated temperatures. The oxygen then combines with the fuel, and heat is generated by the resulting chemical reaction. Chemicals that release fluorine or chlorine on heating, such as polytetrafluoroethylene (Teflon)... [Pg.346]

The standard ASTM PCE test is relative and used extensively only for alumina—siUca refractories and raw materials (see Table 5). However, the upper service limit is generally several hundred degrees below the nominal PCE temperature because some load is generally appHed to the refractory duriag service. In addition, chemical reactions may occur that alter the composition of the hot face and therefore the softening poiat. The relationship between PCE numbers and temperature is described ia ASTM C24. [Pg.35]

The coordinates of thermodynamics do not include time, ie, thermodynamics does not predict rates at which processes take place. It is concerned with equihbrium states and with the effects of temperature, pressure, and composition changes on such states. For example, the equiUbrium yield of a chemical reaction can be calculated for given T and P, but not the time required to approach the equihbrium state. It is however tme that the rate at which a system approaches equihbrium depends directly on its displacement from equihbrium. One can therefore imagine a limiting kind of process that occurs at an infinitesimal rate by virtue of never being displaced more than differentially from its equihbrium state. Such a process may be reversed in direction at any time by an infinitesimal change in external conditions, and is therefore said to be reversible. A system undergoing a reversible process traverses equihbrium states characterized by the thermodynamic coordinates. [Pg.481]

Reaction Formed Ceramics. A variety of specialty ceramics are produced by a combination of a chemical reaction and growth, or by simultaneous chemical reaction and consoHdation using relatively novel ceramic reaction forming and thermal consoHdation processes. Reaction forming processes provide the potential of producing unique ceramics and ceramic composites and high purity ceramics for specialty appHcations. [Pg.313]

To analy2e premixed turbulent flames theoretically, two processes should be considered (/) the effects of combustion on the turbulence, and (2) the effects of turbulence on the average chemical reaction rates. In a turbulent flame, the peak time-averaged reaction rate can be orders of magnitude smaller than the corresponding rates in a laminar flame. The reason for this is the existence of turbulence-induced fluctuations in composition, temperature, density, and heat release rate within the flame, which are caused by large eddy stmctures and wrinkled laminar flame fronts. [Pg.518]

Most theories of droplet combustion assume a spherical, symmetrical droplet surrounded by a spherical flame, for which the radii of the droplet and the flame are denoted by and respectively. The flame is supported by the fuel diffusing from the droplet surface and the oxidant from the outside. The heat produced in the combustion zone ensures evaporation of the droplet and consequently the fuel supply. Other assumptions that further restrict the model include (/) the rate of chemical reaction is much higher than the rate of diffusion and hence the reaction is completed in a flame front of infinitesimal thickness (2) the droplet is made up of pure Hquid fuel (J) the composition of the ambient atmosphere far away from the droplet is constant and does not depend on the combustion process (4) combustion occurs under steady-state conditions (5) the surface temperature of the droplet is close or equal to the boiling point of the Hquid and (6) the effects of radiation, thermodiffusion, and radial pressure changes are negligible. [Pg.520]

Consider a single-phase closed system in which there are no chemical reactions. Under these restric tious the composition is fixed. If such a system undergoes a differential, reversible process, then by Eq. (4-1)... [Pg.514]

The composition of a system may vaiy because the system is open or because of chemical reactions even in a closed system. The equations developed here apply regardless of the cause of composition changes. [Pg.517]

The standard Gibbs-energy change of reaction AG° is used in the calculation of equilibrium compositions. The standard heat of reaclion AH° is used in the calculation of the heat effects of chemical reaction, and the standard heat-capacity change of reaction is used for extrapolating AH° and AG° with T. Numerical values for AH° and AG° are computed from tabulated formation data, and AC° is determined from empirical expressions for the T dependence of the C° (see, e.g., Eq. [4-142]). [Pg.542]

Packed Red Reactors The commonest vessels are cylindrical. They will have gradients of composition and temperature in the radial and axial directions. The partial differential equations of the material and energy balances are summarized in Table 7-10. Example 4 of Modeling of Chemical Reactions in Sec. 23 is an apphcation of such equations. [Pg.702]

When the kinetics are unknown, still-useful information can be obtained by finding equilibrium compositions at fixed temperature or adiabatically, or at some specified approach to the adiabatic temperature, say within 25°C (45°F) of it. Such calculations require only an input of the components of the feed and produc ts and their thermodynamic properties, not their stoichiometric relations, and are based on Gibbs energy minimization. Computer programs appear, for instance, in Smith and Missen Chemical Reaction Equilibrium Analysis Theory and Algorithms, Wiley, 1982), but the problem often is laborious enough to warrant use of one of the several available commercial services and their data banks. Several simpler cases with specified stoichiometries are solved by Walas Phase Equilibiia in Chemical Engineering, Butterworths, 1985). [Pg.2077]

Understanding the behavior of all the chemicals involved in the process—raw materials, intermediates, products and by-products, is a key aspect to identifying and understanding the process safety issues relevant to a given process. The nature of the batch processes makes it more likely for the system to enter a state (pressure, temperature, and composition) where undesired reactions can take place. The opportunities for undesired chemical reactions also are far greater in batch reaction systems due to greater potential for contamination or errors in sequence of addition. This chapter presents issues, concerns, and provides potential solutions related to chemistry in batch reaction systems. [Pg.5]

The above equations for heat transfer apply when there is no heat generation or absorption during the reaction, and the temperature difference between the solid and the gas phase can be simply defined tliroughout the reaction by a single value. Normally this is not the case, and due to the heat of the reaction(s) which occur tlrere will be a change in the average temperature with time. Furthermore, in tire case where a chemical reaction, such as the reduction of an oxide, occurs during the ascent of tire gas in the reactor, the heat transfer coefficient of the gas will vary with tire composition of tire gas phase. [Pg.279]


See other pages where Chemical reaction composite is mentioned: [Pg.938]    [Pg.2744]    [Pg.110]    [Pg.773]    [Pg.444]    [Pg.115]    [Pg.532]    [Pg.198]    [Pg.217]    [Pg.130]    [Pg.2]    [Pg.482]    [Pg.347]    [Pg.348]    [Pg.368]    [Pg.375]    [Pg.522]    [Pg.198]    [Pg.198]    [Pg.212]    [Pg.351]    [Pg.322]    [Pg.312]    [Pg.313]    [Pg.20]    [Pg.233]    [Pg.767]    [Pg.1281]    [Pg.1829]    [Pg.1833]   
See also in sourсe #XX -- [ Pg.3 ]

See also in sourсe #XX -- [ Pg.55 ]




SEARCH



Chemical transport reactions as a new variant of the phase composition control

Composite reaction

Composition reaction

Reaction wood, chemical composition

© 2024 chempedia.info