Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical rate control

The rate constant is not constant for all values of a, b, etc. The observed rate of exchange is not always dependent upon the external concentration as required by a chemical rate controlling mechanism. [Pg.145]

Treatment Chemical rate Control Chewacla of Johnsonerass Congaree... [Pg.39]

Treatment Chemical rate Control"1 i Grain Sorghum-4 WAT 1 DAT 12 DAT of Ragweed-7 WAT 0 DAT... [Pg.41]

The mechanistic steps are as follows paraffins dehydrogenate to olefins the olefins oligomerize and cyclize and the cycHcs aromatize. Because the first step is rate controlling, very Httie olefin is actually present. The BTX product is relatively free of nonaromatics and therefore is very desirable as a chemical feed. As in reforming, some C —C2 fuel gas is produced along with a valuable hydrogen stream. Prom a C —feed the BTX product is roughly 35 45 20, respectively. [Pg.310]

Ordinary diffusion involves molecular mixing caused by the random motion of molecules. It is much more pronounced in gases and Hquids than in soHds. The effects of diffusion in fluids are also greatly affected by convection or turbulence. These phenomena are involved in mass-transfer processes, and therefore in separation processes (see Mass transfer Separation systems synthesis). In chemical engineering, the term diffusional unit operations normally refers to the separation processes in which mass is transferred from one phase to another, often across a fluid interface, and in which diffusion is considered to be the rate-controlling mechanism. Thus, the standard unit operations such as distillation (qv), drying (qv), and the sorption processes, as well as the less conventional separation processes, are usually classified under this heading (see Absorption Adsorption Adsorption, gas separation Adsorption, liquid separation). [Pg.75]

Over 25 years ago the coking factor of the radiant coil was empirically correlated to operating conditions (48). It has been assumed that the mass transfer of coke precursors from the bulk of the gas to the walls was controlling the rate of deposition (39). Kinetic models (24,49,50) were developed based on the chemical reaction at the wall as a controlling step. Bench-scale data (51—53) appear to indicate that a chemical reaction controls. However, flow regimes of bench-scale reactors are so different from the commercial furnaces that scale-up of bench-scale results caimot be confidently appHed to commercial furnaces. For example. Figure 3 shows the coke deposited on a controlled cylindrical specimen in a continuous stirred tank reactor (CSTR) and the rate of coke deposition. The deposition rate decreases with time and attains a pseudo steady value. Though this is achieved in a matter of rninutes in bench-scale reactors, it takes a few days in a commercial furnace. [Pg.438]

Fouling is the term used to describe the loss of throughput of a membrane device as it becomes chemically or physically changed by the process fluid (often by a minor component or a contaminant). A manifestation of fouling in cross-flow UF is that the membrane becomes unresponsive to the hydrodynamic mass transfer which is rate-controlling for most UF. Fouling is different from concentration polarization. Both reduce output, and their resistances are additive. Raising the flow rate in a cross-flow UF will increase flux, as in Eq. [Pg.2041]

In these circumstances a decision must be made which of two (or more) kinet-ically equivalent rate terms should be included in the rate equation and the kinetic scheme (It will seldom be justified to include both terms, certainly not on kinetic grounds.) A useful procedure is to evaluate the rate constant using both of the kinetically equivalent forms. Now if one of these constants (for a second-order reaction) is greater than about 10 ° M s-, the corresponding rate term can be rejected. This criterion is based on the theoretical estimate of a diffusion-controlled reaction rate (this is described in Chapter 4). It is not physically reasonable that a chemical rate constant can be larger than the diffusion rate limit. [Pg.124]

Unfortunately, direct experimental proof of this mechanism is not available. Kinetic data (see below) offer none since the interpretation need not be unique—more than one mechanism can serve equally well. In addition, the physical properties of the catalyst are obviously contributing, and, in the extreme, diffusion can be rate-controlling, completely obscuring chemical mechanisms. [Pg.19]

The kinetic principles operating during the initiation and advance of interface-controlled reactions are identical with the behaviour discussed for the decomposition of a single solid (Chaps. 3 and 4). The condition that overall rate control is determined by an interface process is that a chemical step within this zone is slow compared with the rate of arrival of the second reactant. This condition is not usually satisfied during reaction between solids where the product is formed at the contact of a barrier layer with a reactant. Particular systems that satisfy the specialized requirements can, however, be envisaged for example, rate processes in which all products are volatilized or a solid additive catalyzes the decomposition of a solid yielding no solid residue. Even here, however, the kinetic characteristics are likely to be influenced by changing effectiveness of contact as reaction proceeds, or the deactivation of the catalyst surface. [Pg.256]

Additional information on the rates of these (and other) coupled chemical reactions can be achieved by changing the scan rate (i.e., adjusting the experimental time scale). In particular, the scan rate controls the tune spent between the switching potential and the peak potential (during which the chemical reaction occurs). Hence, as illustrated in Figure 2-6, i is the ratio of the rate constant (of the chemical step) to die scan rate, which controls the peak ratio. Most useful information is obtained when the reaction time lies within the experimental tune scale. For scan rates between 0.02 and 200 V s-1 (common with conventional electrodes), the accessible... [Pg.34]

Adding up the steps in a mechanism must yield the net chemical reaction rapid reactions may follow the rate-controlling step. [Pg.131]

It is now widely accepted that the compositions of the atmosphere and world ocean are dynamically controlled. The atmosphere and the ocean are nearly homogeneous with respect to most major chemical constituents. Each can be viewed as a reservoir for which processes add material, remove material, and alter the compositions of substances internally. The history of the relative rates of these processes determines the concentrations of substances within a reservoir and the rate at which concentrations change. Commonly, only a few processes predominate in determining the flux of a substance between reservoirs. In turn, particular features of a predominant process are often critical in controlling the flux of a phase through that process. These are rate-controlling steps. [Pg.195]

Examples (10.1) and (10.2) used the fact that Steps 4, 5, and 6 must all proceed at the same rate. This matching of rates must always be true, and, as illustrated in the foregoing examples, can be used to derive expressions for the intrinsic reaction kinetics. There is another concept with a time-honored tradition in chemical engineering that should be recognized. It is the concept of rate-determining step or rate-controlling step. [Pg.357]

Chemical reaction rates may show large variations from reaction to reaction, and also with changes of temperature. It is often found that one or the other of the steps involved in the overall process offers the major resistance to its occurrence. Such a slow step controls the rate of the process. As a simplification such a rate-controlling step can be considered alone. In an alternative procedure the nonlinear relationship between rate and concentration is approximated to a linear relationship. To do this the nonlinear rate is expanded in the form of a Taylor s series and only the linear terms are retained. [Pg.309]

In general, the overall reaction process may comprise several individual steps, as shown in Figure 3.24. It could be seen that these steps pertain to (i) mass transfers of reactants and the products between the bulk of the fluid and the external surface of the solids (ii) transport of reactants and the products within the pores of the solid and (iii) chemical reaction between the reactants in the fluid and those in the solid. In order to be able to determine the rate-controlling step and to ascertain whether more than a single step should be consid-... [Pg.331]

There is a second relaxation process, called spin-spin (or transverse) relaxation, at a rate controlled by the spin-spin relaxation time T2. It governs the evolution of the xy magnetisation toward its equilibrium value, which is zero. In the fluid state with fast motion and extreme narrowing 7) and T2 are equal in the solid state with slow motion and full line broadening T2 becomes much shorter than 7). The so-called 180° pulse which inverts the spin population present immediately prior to the pulse is important for the accurate determination of T and the true T2 value. The spin-spin relaxation time calculated from the experimental line widths is called T2 the ideal NMR line shape is Lorentzian and its FWHH is controlled by T2. Unlike chemical shifts and spin-spin coupling constants, relaxation times are not directly related to molecular structure, but depend on molecular mobility. [Pg.327]


See other pages where Chemical rate control is mentioned: [Pg.897]    [Pg.120]    [Pg.898]    [Pg.127]    [Pg.92]    [Pg.897]    [Pg.120]    [Pg.898]    [Pg.127]    [Pg.92]    [Pg.202]    [Pg.267]    [Pg.485]    [Pg.46]    [Pg.521]    [Pg.706]    [Pg.105]    [Pg.323]    [Pg.277]    [Pg.94]    [Pg.1304]    [Pg.879]    [Pg.173]    [Pg.944]    [Pg.9]    [Pg.120]    [Pg.68]    [Pg.279]    [Pg.85]    [Pg.156]    [Pg.401]    [Pg.302]    [Pg.242]    [Pg.384]    [Pg.706]    [Pg.797]    [Pg.336]    [Pg.230]   
See also in sourсe #XX -- [ Pg.138 ]




SEARCH



Chemical rate

Chemically controlled

Rate control

Rate controlling

© 2024 chempedia.info