Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical properties Addition, reactions

The properties of a compound with isolated double bonds, such as 1,4-pentadiene, generally are similar to those of simple alkenes because the double bonds are essentially isolated from one another by the intervening CH2 group. However, with a conjugated alkadiene, such as 1,3-pentadiene, or a cumulated alkadiene, such as 2,3-pentadiene, the properties are sufficiently different from those of simple alkenes (and from each other) to warrant separate discussion. Some aspects of the effects of conjugation already have been mentioned, such as the influence on spectroscopic properties (see Section 9-9B). The emphasis here will be on the effects of conjugation on chemical properties. The reactions of greatest interest are addition reactions, and this chapter will include various types of addition reactions electrophilic, radical, cycloaddition, and polymerization. [Pg.489]

We have already discussed one important chemical property of alkynes the acidity of acetylene and terminal alkynes In the remaining sections of this chapter several other reactions of alkynes will be explored Most of them will be similar to reactions of alkenes Like alkenes alkynes undergo addition reactions We 11 begin with a reaction familiar to us from our study of alkenes namely catalytic hydrogenation... [Pg.374]

The most important chemical property of the carbonyl group is its tendency to undergo nucleophilic addition reactions of the type represented m the general equation... [Pg.712]

In the preceding chapter you learned that nucleophilic addition to the carbonyl group IS one of the fundamental reaction types of organic chemistry In addition to its own reactivity a carbonyl group can affect the chemical properties of aldehydes and ketones m other ways Aldehydes and ketones having at least one hydrogen on a carbon next to the carbonyl are m equilibrium with their enol isomers... [Pg.755]

Chemical Properties. In addition to the reactions Hsted in Table 3, boron trifluoride reacts with alkali or alkaline-earth metal oxides, as well as other inorganic alkaline materials, at 450°C to yield the trimer trifluoroboroxine [13703-95-2] (BOF), MBF, and MF (29) where M is a univalent metal ion. The trimer is stable below — 135°C but disproportionates to B2O2 and BF at higher temperatures (30). [Pg.160]

Chemical Properties. The chemistry of ketenes is dominated by the strongly electrophilic j/)-hybridi2ed carbon atom and alow energy lowest unoccupied molecular orbital (LUMO). Therefore, ketenes are especially prone to nucleophilic attack at Cl and to [2 + 2] cycloadditions. Less frequent reactions are the so-called ketene iasertion, a special case of addition to substances with strongly polarized or polarizable single bonds (37), and the addition of electrophiles at C2. For a review of addition reactions of ketenes see Reference 8. [Pg.473]

The chemical properties of cycHc ketones also vary with ring size. Lower members (addition reactions, than corresponding acycHc ketones. The Cg—C 2 ketones are unreactive, reflecting the strain and high enol content of medium-sized ring systems. Lactones are prepared from cycHc ketones by the Bayer-ViUiger oxidation reaction with peracids. S-Caprolactone is manufactured from cyclohexane by this process ... [Pg.500]

Chemical Properties. Higher a-olefins are exceedingly reactive because their double bond provides the reactive site for catalytic activation as well as numerous radical and ionic reactions. These olefins also participate in additional reactions, such as oxidations, hydrogenation, double-bond isomerization, complex formation with transition-metal derivatives, polymerization, and copolymerization with other olefins in the presence of Ziegler-Natta, metallocene, and cationic catalysts. All olefins readily form peroxides by exposure to air. [Pg.426]

Chemical Properties. The presence of both a carbocycHc and a heterocycHc ring faciUtates a broad range of chemical reactions for (1) and (2). Quaternary alkylation on nitrogen takes place readily, but unlike pyridine both quinoline and isoquinoline show addition by subsequent reaction with nucleophiles. Nucleophilic substitution is promoted by the heterocycHc nitrogen. ElectrophiHc substitution takes place much more easily than in pyridine, and the substituents are generally located in the carbocycHc ring. [Pg.389]

Physical and Chemical Properties. The (F)- and (Z)-isomers of cinnamaldehyde are both known. (F)-Cinnamaldehyde [14371-10-9] is generally produced commercially and its properties are given in Table 2. Cinnamaldehyde undergoes reactions that are typical of an a,P-unsaturated aromatic aldehyde. Slow oxidation to cinnamic acid is observed upon exposure to air. This process can be accelerated in the presence of transition-metal catalysts such as cobalt acetate (28). Under more vigorous conditions with either nitric or chromic acid, cleavage at the double bond occurs to afford benzoic acid. Epoxidation of cinnamaldehyde via a conjugate addition mechanism is observed upon treatment with a salt of /-butyl hydroperoxide (29). [Pg.174]

Two standard estimation methods for heat of reaction and CART are Chetah 7.2 and NASA CET 89. Chetah Version 7.2 is a computer program capable of predicting both thermochemical properties and certain reactive chemical hazards of pure chemicals, mixtures or reactions. Available from ASTM, Chetah 7.2 uses Benson s method of group additivity to estimate ideal gas heat of formation and heat of decomposition. NASA CET 89 is a computer program that calculates the adiabatic decomposition temperature (maximum attainable temperature in a chemical system) and the equilibrium decomposition products formed at that temperature. It is capable of calculating CART values for any combination of materials, including reactants, products, solvents, etc. Melhem and Shanley (1997) describe the use of CART values in thermal hazard analysis. [Pg.23]

Methanol synthesis will be used many times as an example to explain some concepts, largely because the stoichiometry of methanol synthesis is simple. The physical properties of all compounds are well known, details of many competing technologies have been published and methanol is an important industrial chemical. In addition to its relative simplicity, methanol synthesis offers an opportunity to show how to handle reversible reactions, the change in mole numbers, removal of reaction heat, and other engineering problems. [Pg.281]

Process in wliich the addition of heat, catalyst or both, with or without pressure, causes the physical properties of the plastic to change through a chemical reaction. Reaction may be condensation, polymerization or addition reactions. [Pg.131]

When polymerizing dienes for synthetic rubber production, coordination catalysts are used to direct the reaction to yield predominantly 1,4-addition polymers. Chapter 11 discusses addition polymerization. The following reviews some of the physical and chemical properties of butadiene and isoprene. [Pg.36]

The micrographs in Fig. 7.88 show clearly how from a knowledge of the AG -concentration diagrams it is possible to select the exact reaction conditions for the production of tailor-made outermost surface phase layers of the most desired composition and thus of the optimum physical and chemical properties for a given system. In addition it shows that according to thermodynamics, there can be predictable differences in the composition of the same outermost phase layer prepared at the same conditions of temperature but under slightly different vapour pressures. [Pg.1139]

Although pyrrole appears to be both an amine and a conjugated diene, its chemical properties are not consistent with either of these structural features. Unlike most other amines, pyrrole is not basic—the pKa of the pyrrolin-ium ion is 0.4 unlike most other conjugated dienes, pyrrole undergoes electrophilic substitution reactions rather than additions. The reason for both these properties, as noted previously in Section 15.5, is that pyrrole has six 77 electrons and is aromatic. Each of the four carbons contributes one... [Pg.946]

An important characteristic feature, common to all these reactions, is the formation of a single product (barrier) phase. In addition, the lattice structures of both reactants and products are relatively simple and information on appropriate physical and chemical properties of these substances is available. Complex iodide formation is of particular interest because of the exceptionally large cation mobilities in these phases. Experimental methods have been described in Sect. 1 and Chap. 2. [Pg.267]

The pentacoordinate molecules of trigonal bipyramidal form, like PF5, are a very nice example for the study of the formal properties of stereoisomerizations. They are characterized by an appreciable nonrigidity and they permit the description of kinetics among a reasonable number of isomers, at least in particular cases (see below). Therefore the physical and chemical properties of these molecules have been thoroughly investigated in relation to stereoisomerization. Recent reviews may be found in the literature on some aspects of this problem. Mislow has described the role of Berry pseudorotation on nucleophilic addition-elimination reactions and Muetterties has reviewed the stereochemical consequences of non-rigidity, especially for five- and six-atom families as far as their nmr spectra are concerned. [Pg.44]

Finally, the chemical properties of the new structures available from disilene addition reactions have hardly been touched. In future developments, theoretical and experimental studies are likely to proceed together and complement one another, as they have from the beginning days of this research. [Pg.270]


See other pages where Chemical properties Addition, reactions is mentioned: [Pg.40]    [Pg.241]    [Pg.269]    [Pg.656]    [Pg.81]    [Pg.215]    [Pg.481]    [Pg.487]    [Pg.473]    [Pg.463]    [Pg.2]    [Pg.44]    [Pg.682]    [Pg.481]    [Pg.150]    [Pg.89]    [Pg.99]    [Pg.795]    [Pg.31]    [Pg.46]    [Pg.215]    [Pg.265]    [Pg.36]    [Pg.374]    [Pg.915]    [Pg.225]    [Pg.317]    [Pg.230]   
See also in sourсe #XX -- [ Pg.114 ]




SEARCH



Additive properties

Chemical additives

Chemical reactions addition

Reactions properties

© 2024 chempedia.info