Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical equilibrium thermodynamic studies

When van t Hoff received his Nobel prize in 1901, the study of chemical equilibrium thermodynamics was almost complete. Kinetics, however, belongs to the field of non-equilibrium thermodynamics, a subject for which the principles still had to be formulated. The 1931 work of Lars Onsager marks the beginning of the linear non-equilibrium thermodynamics. This discipline provides a firm basis for the kinetics of the steady state, which applies to many catalytic processes. Onsager received the Nobel prize in 1968. Recently, oscillating reactions have... [Pg.9]

A tabulation of the partial pressures of sulfuric acid, water, and sulfur trioxide for sulfuric acid solutions can be found in Reference 80 from data reported in Reference 81. Figure 13 is a plot of total vapor pressure for 0—100% H2SO4 vs temperature. References 81 and 82 present thermodynamic modeling studies for vapor-phase chemical equilibrium and liquid-phase enthalpy concentration behavior for the sulfuric acid—water system. Vapor pressure, enthalpy, and dew poiat data are iacluded. An excellent study of vapor—liquid equilibrium data are available (79). [Pg.180]

Why Do We Need to Know This Material The dynamic equilibrium toward which every chemical reaction tends is such an important aspect of the study of chemistry that four chapters of this book deal with it. We need to know the composition of a reaction mixture at equilibrium because it tells us how much product we can expect. To control the yield of a reaction, we need to understand the thermodynamic basis of equilibrium and how the position of equilibrium is affected by conditions such as temperature and pressure. The response of equilibria to changes in conditions has considerable economic and biological significance the regulation of chemical equilibrium affects the yields of products in industrial processes, and living cells struggle to avoid sinking into equilibrium. [Pg.477]

Although thermodynamics can be used to predict the direction and extent of chemical change, it does not tell us how the reaction takes place or how fast. We have seen that some spontaneous reactions—such as the decomposition of benzene into carbon and hydrogen—do not seem to proceed at all, whereas other reactions—such as proton transfer reactions—reach equilibrium very rapidly. In this chapter, we examine the intimate details of how reactions proceed, what determines their rates, and how to control those rates. The study of the rates of chemical reactions is called chemical kinetics. When studying thermodynamics, we consider only the initial and final states of a chemical process (its origin and destination) and ignore what happens between them (the journey itself, with all its obstacles). In chemical kinetics, we are interested only in the journey—the changes that take place in the course of reactions. [Pg.649]

Kinetic studies of chemical equilibrium (Reaction 4) have provided very accurate thermodynamic information about the series Me3 SiH +i (with n having values from 0 to 3). ° In particular, the rate constants 4 and k, obtained by time-resolved experiments, allow the determination of the reaction enthalpy (AHr) either by second or third law method. In Table 2 the DHfRsSi-H) values obtained by Equation (5) are reported. [Pg.121]

Balzhiser, R. E., Samuels, M. R. and Eliassen, J. D. Chemical Engineering Thermodynamics The Study of Energy, Entropy, and Equilibrium (Prentice-Hall, Englewood Cliffs, NJ, 1972). [Pg.650]

Studies of the kinetics of chemical equilibrium (Reactions 2.3/—2.3) have provided very accurate thermodynamic information from the series... [Pg.21]

Thermodynamic studies of systems at equilibrium permit one to gain insights regarding mechanisms of chemical and biochemical reactions. Thermodynamic consider-... [Pg.271]

Medium-chain alcohols such as 2-butoxyethanol (BE) exist as microaggregates in water which in many respects resemble micellar systems. Mixed micelles can be formed between such alcohols and surfactants. The thermodynamics of the system BE-sodlum decanoate (Na-Dec)-water was studied through direct measurements of volumes (flow denslmetry), enthalpies and heat capacities (flow microcalorimetry). Data are reported as transfer functions. The observed trends are analyzed with a recently published chemical equilibrium model (J. Solution Chem. 13,1,1984). By adjusting the distribution constant and the thermodynamic property of the solute In the mixed micelle. It Is possible to fit nearly quantitatively the transfer of BE from water to aqueous NaDec. The model Is not as successful for the transfert of NaDec from water to aqueous BE at low BE concentrations Indicating self-association of NaDec Induced by BE. The model can be used to evaluate the thermodynamic properties of both components of the mixed micelle. [Pg.79]

The chemical equilibrium model of Roux et al (6) is a powerful tool for the study of the thermodynamics of mixed micellar solutions. It can estimate the distribution constant of the surfactant 3 between water and micelles of the surfactant 2 and the thermodynamic properties of the surfactant 3 in the mixed micelles. For this it is necessary to obtain reliable data over a large concentration range of solute 2. [Pg.88]

Some earlier thermodynamic studies on rutile reported expressions involving simple idealized quasi-chemical equilibrium constants for point defect equilibria (see, e.g., Kofstad 1972) by correlating the composition x in TiOx with a function of AGm (O2), which is the partial molar free energy of oxygen. However, the structural effects were not accounted for in these considerations. Careful measurements of AGm (O2) in the TiOjc system (Bursill and Hyde 1971) have indicated that complete equilibrium is rarely achieved in non-stoichiometric rutile. [Pg.31]

Thermodynamic Studies of Chemical Equilibrium in Supercritical Carbon Dioxide-cosolvent Solutions Using UV-Vis Spectroscopy (Lu et al., 1999)... [Pg.194]

Looking at thermodynamics from the physical chemistry perspective, students at the high school and college levels experience difficulties with fundamental concepts in chemical equilibrium and thermodynamics (61). Thomas and Schwenz (62) found that physical chemistry students still have difficulties with the above concepts, which may continue through their professional careers. Both students and lecturers in the SOzbilir study (52) (see above) assumed the abstract nature of thermodynamics concepts as a cause of learning difficulties. [Pg.85]

Gas detonation at reduced initial pressures were studied by Vasil ev et al (Ref 8). They point out the errors in glibly comparing ideal lossless onedimensional computations with measurements made in 3-dimensicnal systems. We quote In an ideal lossless detonation wave, the Chapman-Jouguet plane is identified with the plane of complete chemical and thermodynamic equilibrium. As a rule, in a real detonation wave the Chapman-Jouguet state is assumed to be the gas state behind the front, where the measurable parameters are constant, within the experimental errors. It is assumed that, in the one-dimensional model of the detonation wave in the absence of loss, the conditions in the transient rarefaction wave accompanying the Chapman-Jouguet plane vary very slowly if the... [Pg.237]

Thermodynamic systems are parts of the real world isolated for thermodynamic study. The parts of the real world which are to be isolated here are either natural water systems or certain regions within these systems, depending upon the physical and chemical complexity of the actual situation. The primary objects of classical thermodynamics are two particular kinds of isolated systems adiabatic systems, which cannot exchange either matter or thermal energy with their environment, and closed systems, which cannot exchange matter with their environment. (The closed system may, of course, consist of internal phases which are each open with respect to the transport of matter inside the closed system.) Of these, the closed system, under isothermal and iso-baric conditions, is the one particularly applicable for constructing equilibrium models of actual natural water systems. [Pg.8]

Solid-Phase Chemical Equilibrium. For the growth of multicomponent films, the solid film composition must be predicted from the gas-phase composition. In general, this prediction requires detailed information about transport rates and surface incorporation rates of individual species, but the necessary kinetics data are rarely available. On the other hand, the equilibrium analysis only requires thermodynamic data (e.g., phase equilibrium data), which often are available from liquid-phase-epitaxy studies, as discussed by Anderson in Chapter 3. [Pg.223]

In many solutions strong interactions may occur between like molecules to form polymeric species, or between unlike molecules to form new compounds or complexes. Such new species are formed in solution or are present in the pure substance and usually cannot be separated from the solution. Basically, thermodynamics is not concerned with detailed knowledge of the species present in a system indeed, it is sufficient as well as necessary to define the state of a system in terms of the mole numbers of the components and the two other required variables. We can make use of the expressions for the chemical potentials in terms of the components. In so doing all deviations from ideal behavior, whether the deviations are caused by the formation of new species or by the intermolecular forces operating between the molecules, are included in the excess chemical potentials. However, additional information concerning the formation of new species and the equilibrium constants involved may be obtained on the basis of certain assumptions when the experimental data are treated in terms of species. The fact that the data may be explained thermodynamically in terms of species is no proof of their existence. Extra-thermodynamic studies are required for the proof. [Pg.312]

Thermodynamic studies yield values of Ap as a function of the mole fraction in terms of the components at constant temperature and pressure. We must now assume which species are present, basing the assumptions on our knowledge of the chemical behavior of the component and of the system as a whole, and values of the equilibrium constants relating to the formation of the species from the components. The most convenient independent variable is the mole fraction of the monomeric species, xAt. A sufficient number of equations to calculate all mole fractions of the species and the components in terms of xAl are obtained from the expressions for the assumed independent equilibrium constants and the fact that the sum of the mole fractions in terms of species must equal unity. The assumed values of the equilibrium constants are adjusted and the species changed until Equation (11.107) is satisfied. The equivalent equation for the second component must also be satisfied. [Pg.313]

Physical chemistry, in the hands of the ionists, looked above all at questions of equilibrium and yield, using chemical thermodynamics. But physical chemistry, as the ionists were well aware, was more than the study of equilibrium and yield, and more too than the study of electrolysis. Chemical kinetics, the study of reaction rates, of the speed with which reactions take place, also has an important and early place in the history of physical chemistry. And, just as electrochemistry began well before the clear assertion of the discipline of physical chemistry, so too did chemical kinetics. [Pg.163]

The study of chemical equilibrium can detect thermodynamic constraints on the achievable conversion and selectivity. In this section we make use of the Gibbs free-energy minimization method available in Aspen Plus [9], We assume that both cyclohexanone and cyclohexanol are products. The curves in Figure 5.2 show the evolution of the phenol equilibrium conversion, yield and selectivity with the ratio hydrogen/phenol at temperatures of 180, 200, 220 °C and a pressure of 3 bar. [Pg.133]

Thermodynamics is a branch of physical chemistry that deals quantitatively with the inter-exchange of heat and work evolved in physical and chemical processes. This subject is widely utilized to explain equilibrium systems in physical pharmacy. For example, a pharmaceutical scientist may use equilibrium thermodynamics to study isotonic solutions, solubility of drugs, distributions of drugs in different phases, or ionization of weak acids and weak bases. Even though the gas laws are not usually directly related to pharmaceutical science (with some exceptions such as aerosols), these concepts must be introduced when dealing with simple thermodynamic systems of gases and the universal gas constant, R. [Pg.12]

A mixture of electrons, ions, and atoms forms a system similar to that which we considered in Chap. X, dealing with chemical equilibrium in gases. Equilibrium is determined, as it was there, by the mass action law. This law can be derived by balancing the rates of direct and inverse collisions, but it can also be derived from thermodynamics, and the equilibrium constant can be found from the heat of reaction and the chemical constants of the various particles concerned. The heats of reaction can be found from the various ionization potentials, quantities susceptible of independent measurement, and the chemical constants are determined essentially as in Chap. VIII. Thus there are no new principles involved in studying the equilibrium of atoms, electrons, and ions, and we shall merely give a qualitative discussion in this section, the statements being equivalent to mathematical results which can be established immediately from the methods of Chap. X. [Pg.334]

A reaction in which one atom replaces another, usually as a substituent on a carbon atom. (p. 134) A step that produces fewer reactive intermediates (usually free radicals) than it consumes, (p. 136) The study of the energy changes accompanying chemical transformations. Thermodynamics is generally concerned with systems at equilibrium, (pp. 132, 138)... [Pg.170]


See other pages where Chemical equilibrium thermodynamic studies is mentioned: [Pg.191]    [Pg.255]    [Pg.6]    [Pg.118]    [Pg.289]    [Pg.20]    [Pg.384]    [Pg.476]    [Pg.130]    [Pg.201]    [Pg.85]    [Pg.283]    [Pg.284]    [Pg.4]    [Pg.744]    [Pg.468]    [Pg.141]    [Pg.232]    [Pg.10]    [Pg.156]    [Pg.157]    [Pg.160]    [Pg.19]    [Pg.39]    [Pg.54]    [Pg.75]    [Pg.1]   


SEARCH



Chemical equilibrium thermodynamic

Chemical thermodynamics

Chemicals studied

Equilibrium thermodynamics

Thermodynamic Equilibrium Studies

Thermodynamic studies

Thermodynamics Equilibrium/equilibria

Thermodynamics chemical equilibria

© 2024 chempedia.info