Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical equations completion

Mechanisms. Mechanism is a technical term, referring to a detailed, microscopic description of a chemical transformation. Although it falls far short of a complete dynamical description of a reaction at the atomic level, a mechanism has been the most information available. In particular, a mechanism for a reaction is sufficient to predict the macroscopic rate law of the reaction. This deductive process is vaUd only in one direction, ie, an unlimited number of mechanisms are consistent with any measured rate law. A successful kinetic study, therefore, postulates a mechanism, derives the rate law, and demonstrates that the rate law is sufficient to explain experimental data over some range of conditions. New data may be discovered later that prove inconsistent with the assumed rate law and require that a new mechanism be postulated. Mechanisms state, in particular, what molecules actually react in an elementary step and what products these produce. An overall chemical equation may involve a variety of intermediates, and the mechanism specifies those intermediates. For the overall equation... [Pg.514]

Theoretical Oxygen and Air for Combustion The amount of oxidant (oxygen or air) just sufficient to burn the carbon, hydrogen, and sulfur in a fuel to carbon dioxide, water vapor, and sulfur dioxide is the theoretical or stoichiometric oxygen or air requirement. The chemical equation for complete combustion of a fuel is... [Pg.2379]

Write the overall chemical equation and calculate K for the complete ionization of oxalic acid, H2C2O4. [Pg.379]

There must be a simple reaction which can be expressed by a chemical equation the substance to be determined should react completely with the reagent in stoichiometric or equivalent proportions. [Pg.258]

DSP treatments allow one to separate the field and mesomeric effects of substituents on chemical reactivities and physical properties (electronic and NMR spectra, etc.) of organic compounds. In Section 8.3 we will discuss heterolytic dediazoniation of substituted benzenediazonium ions. For this series of reactions the classical Hammett equation completely fails to give useful results (see Fig. 8-1), but the DSP treatment yields a good and mechanistically very meaningful correlation. [Pg.151]

For the reaction between solid sodium and water, the complete, balanced chemical equation is therefore... [Pg.86]

A complete ionic equation expresses a reaction in terms of the ions that are present in solution a net ionic equation is the chemical equation that remains after the cancellation of the spectator ions. [Pg.93]

Each of the following five procedures results in the formation of a precipitate. For each reaction, write the chemical equations describing the formation of the precipitate the overall equation, the complete ionic equation, and the net ionic equation. Identify the spectator ions. [Pg.95]

L.25 Barium bromide, BaBrv, can be converted into BaCl2 by treatment with chlorine. It is found that 3.25 g of BaBrv reacts completely with an excess of chlorine to yield 2.27 g of BaCl2. Determine the value of x and write the balanced chemical equation for the production of BaCl2 from BaBr,.. [Pg.116]

Stoichiometric calculations of the amount of product formed in a reaction are based on an ideal view of the world. They suppose, for instance, that all the reactants react exactly as described in the chemical equation. In practice, that might not be so. Some of the starting materials may be consumed in a competing reaction, a reaction taking place at the same time as the one in which we are interested and using some of the same reactants. Another possibility is that the reaction might not be complete at the time we make our measurements. A third possibility—of major importance in chemistry and covered in several chapters of this text—is that many reactions do not go to completion. They appear to stop once a certain proportion of the reactants has been consumed. [Pg.116]

STRATEGY Begin by writing the chemical equation for the complete oxidation of octane to carbon dioxide and water. Then calculate the theoretical yield (in grams) of CO, by using the procedure in Toolbox L.l. To avoid rounding errors, do all the numerical work at the end of the calculation. To obtain the percentage yield, divide the actual I mass produced by the theoretical mass of product and multiply by 100%. [Pg.117]

Calcium carbide, CaC2, reacts with water to form calcium hydroxide and the flammable gas ethyne (acetylene). This reaction was once used for lamps on bicycles, because the reactants are easily transported, (a) Which is the limiting reactant when 1.00 X 102 g of water reacts with 1.00 X 102 g of calcium carbide (b) What mass of ethyne can he produced (c) What mass of excess reactant remains after reaction is complete Assume that the calcium carbide is pure and that all the ethyne produced is collected. The chemical equation is... [Pg.118]

STRATEGY First, we write the chemical equation for the equilibrium and the expression for the solubility product. To evaluate Ksp, we need to know the molarity of each type of ion formed by the salt. We determine the molarities from the molar solubility, the chemical equation for the equilibrium, and the stoichiometric relations between the species. We assume complete dissociation. [Pg.587]

The interhalogen IFT can be made only by indirect routes. For example, xenon difluoride gas can react with iodine gas to produce 1FV and xenon gas. In one experiment xenon difluoride is introduced into a rigid container until a pressure of 3.6 atm is reached. Iodine vapor is then introduced until the total pressure is 7.2 atm. Reaction is then allowed to proceed at constant temperature until completion by solidifying the IF as it is produced. The final pressure in the flask due to the xenon and excess iodine vapor is 6.0 atm. (a) What is the formula of the mterhalogen (b) Write the chemical equation for its formation. [Pg.772]

Write the balanced chemical equation for the complete fluorination of methane to tetrafluoromethane. Using bond enthalpies, estimate the enthalpy of this reaction. The corresponding reaction using chlorine is much less exothermic. To what can this difference be attributed ... [Pg.868]

Examples 1,1, and 2 in H2 + Br2 - 2 HBr. stoichiometric point The stage in a titration when exactly the right volume of solution needed to complete the reaction has been added, stoichiometric proportions Reactants in the same proportions as their coefficients in the chemical equation. Example equal amounts of H2 and Br2 in the formation of HBr. [Pg.968]

C06-0057. Acetylene (C2 H2) Is used In welding torches because it has a high heat of combustion. When 1.00 g of acetylene bums completely in excess O2 gas at constant volume, it releases 48.2 kJ of energy, (a) What Is the balanced chemical equation for this reaction (b) What is the molar energy of combustion of acetylene (c) How much energy is released per mole of O2 consumed ... [Pg.422]

Tropinone is another classic compound in the history of total synthesis. The celebrated plans of Willstatter and Robinson are shown in Schemes 4.20 and 4.21 and Figure 4.63 shows a synthesis map for different ways this compoimd has been made. The synthesis tree for the three-component Robinson plan is shown in Figure 4.64. Calcium carbonate and hydrochloric acid are added as inputs to complete the balanced chemical equation since these are involved in a neutralization reaction. It is clear from the results summarized in Table 4.30 that the Robinson plan is the clear front-rimner because the synthesis is achieved in a single step even though the reaction yield is modest. Any further improvements to this method would be directed to improving this parameter. [Pg.167]

When two substances react, they react in exact amounts. You can determine what amounts of the two reactants are needed to react completely with each other by means of mole ratios based on the balanced chemical equation for the reaction. In the laboratory, precise amounts of the reactants are rarely used in a reaction. Usually, there is an excess of one of the reactants. As soon as the other reactant is used up, the reaction stops. The reactant that is used up is called the limiting reactant. Based on the quantities of each reactant and the balanced chemical equation, you can predict which substance in a reaction is the limiting reactant. [Pg.89]

A chemical equation shows that as a chemical reaction takes place, reactants are changed into products. The reaction rate of a chemical reaction is often expressed as the change in concentration of a reactant or a product in a unit amount of time. In this activity, the reaction rate will be calculated from the amount of time it takes for a given amount of magnesium (Mg) to react completely with hydrochloric acid (HCI). [Pg.129]

The percent yield is 100 times the amount of a product actually prepared during a reaction divided by the amount theoretically possible to be prepared according to the balanced chemical equation. (Some reactions are slow, and sometimes not enough time is allowed for their completion some reactions are accompanied by side reactions which consume a portion of the reactants some reactions never get to completion.) If 3.00g C6H,Br is prepared by treating 3.00g ChHl2 with excess Br2, what is the percent yield The equation is... [Pg.147]

For the potential given by (5.3), it is easy to show that when b > bc the distance of closest approach is bc /21/2, whereas for b < b, the only thing preventing interpenetration is a repulsive core potential, which is not explicitly considered here. Equation (5.4) is actually the classical collision cross section for the problem. To translate this into a reaction cross section, we may assume that there is another critical separation r0 such that when r < rg chemical forces complete the reaction and no reaction takes place if r > rg. If rg is less than b /2m, then Eq. (5.4) is also the reaction cross section, since reaction definitely takes place if b < b. and it definitely does not take place if b > b.. According to this modification, the high-energy limit of the reaction cross section is nr2 rather than zero as given by (5.4). One therefore has... [Pg.141]

I of reaction as a reaction path). The important consequence is that the maximum / number of steps in a kinetics scheme is the same as the number (R) of chemical equations (the number of steps in a kinetics mechanism is usually greater), and hence stoichiometry tells us the maximum number of independent rate laws that we must obtain experimentally (one for each step in the scheme) to describe completely the macroscopic behavior of the system. [Pg.13]

A complete chemical reaction in which no fuel and no oxygen is left is called a stoichiometric reaction. This is used as a reference, and its corresponding stoichiometric oxygen to fuel mass ratio, r, can be determined from the chemical equation. A useful parameter to describe the state of the reactant mixture is the equivalence ratio, d, defined as... [Pg.22]

In this chapter, you learned how to balance simple chemical equations by inspection. Then you examined the mass/mole/particle relationships. A mole has 6.022 x 1023 particles (Avogadro s number) and the mass of a substance expressed in grams. We can interpret the coefficients in the balanced chemical equation as a mole relationship as well as a particle one. Using these relationships, we can determine how much reactant is needed and how much product can be formed—the stoichiometry of the reaction. The limiting reactant is the one that is consumed completely it determines the amount of product formed. The percent yield gives an indication of the efficiency of the reaction. Mass data allows us to determine the percentage of each element in a compound and the empirical and molecular formulas. [Pg.44]

Combination of the electrostatic equations with the chemical equations then completely defines the interface. [Pg.66]


See other pages where Chemical equations completion is mentioned: [Pg.108]    [Pg.108]    [Pg.645]    [Pg.645]    [Pg.673]    [Pg.96]    [Pg.361]    [Pg.945]    [Pg.153]    [Pg.311]    [Pg.324]    [Pg.324]    [Pg.325]    [Pg.70]    [Pg.89]    [Pg.27]    [Pg.103]    [Pg.29]    [Pg.43]    [Pg.71]    [Pg.276]    [Pg.685]   
See also in sourсe #XX -- [ Pg.567 , Pg.568 , Pg.568 ]




SEARCH



Chemical equations complete ionic

Chemicals equations

Writing completing chemical equations

© 2024 chempedia.info