Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical elements atomic structure

As explained in the entry on Chemical Elements Atomic Structure of... [Pg.158]

For each atom i with the Cartesian coordinates (X,-, T,-, Z,) there is one individual atomic neural network providing the energy For a given chemical element the structure and weight parameters of the atomic NNs... [Pg.29]

Structural keys describe the chemical composition and structural motifs of molecules represented as a Boolean array. If a certain structural feature is present in a molecule or a substructure, a particular bit is set to 1 (true), otherwise to 0 (false). A bit in this array may encode a particular functional group (such as a carboxylic acid or an amidelinkage), a structural element (e.g., a substituted cyclohexane), or at least n occurrences of a particular element (e.g., a carbon atom). Alternatively, the structural key can be defined as an array of integers where the elements of this array contain the frequency of a specific feature in the molecule. [Pg.403]

With only 90 elements, one might assume that there could be only about 90 different substances possible, but everyday experience shows that there are millions of different substances, such as water, brick, wood, plastics, etc. Indeed, elements can combine with each other, and the complexity of these possible combinations gives rise to the myriad substances found naturally or produced artificially. These combinations of elemental atoms are called compounds. Since atoms of an element can combine with themselves or with those of other elements to form molecules, there is a wide diversity of possible combinations to make all of the known substances, naturally or synthetically. Therefore, atoms are the simplest chemical building blocks. However, to understand atoms, it is necessary to examine the structure of a typical atom or, in other words, to examine the building blocks of the atoms themselves. The building blocks of atoms are called electrons, protons, and neutrons (Figure 46.1). [Pg.336]

This book presents a unified treatment of the chemistry of the elements. At present 112 elements are known, though not all occur in nature of the 92 elements from hydrogen to uranium all except technetium and promethium are found on earth and technetium has been detected in some stars. To these elements a further 20 have been added by artificial nuclear syntheses in the laboratory. Why are there only 90 elements in nature Why do they have their observed abundances and why do their individual isotopes occur with the particular relative abundances observed Indeed, we must also ask to what extent these isotopic abundances commonly vary in nature, thus causing variability in atomic weights and possibly jeopardizing the classical means of determining chemical composition and structure by chemical analysis. [Pg.1]

There is no single best form of the periodic table since the choice depends on the purpose for which the table is used. Some forms emphasize chemical relations and valence, whereas others stress the electronic configuration of the elements or the dependence of the periods on the shells and subshells of the atomic structure. The most convenient form for our purpose is the so-called long form with separate panels for the lanthanide and actinide elements (see inside front cover). There has been a lively debate during the past decade as to the best numbering system to be used for the individual... [Pg.20]

What structure types result when the atomic positions in Fig. 15.3 are occupied in the following manner (A, B, C and D refer to chemical elements) ... [Pg.165]

Krebs, Robert E. The history and use of our earth s chemical elements a reference guide. Westport (CT) Greenwood P, 1998. ix, 346p. ISBN 0-313-30123-9 A short history of chemistry — Atomic structure The periodic table of the chemical elements — Alkali metals and alkali earth metals - Transition elements metals to nonmetals — Metallics and metalloids - Metalloids and nonmetals — Halogens and noble gases - Lanthanide series (rare-earth elements) — Actinide, transuranic, and transactinide series... [Pg.448]

A number of chemical elements, mainly oxygen and carbon but also others, such as tin, phosphorus, and sulfur, occur naturally in more than one form. The various forms differ from one another in their physical properties and also, less frequently, in some of their chemical properties. The characteristic of some elements to exist in two or more modifications is known as allotropy, and the different modifications of each element are known as its allotropes. The phenomenon of allotropy is generally attributed to dissimilarities in the way the component atoms bond to each other in each allotrope either variation in the number of atoms bonded to form a molecule, as in the allotropes oxygen and ozone, or to differences in the crystal structure of solids such as graphite and diamond, the allotropes of carbon. [Pg.94]

Crystals of high purity metals are very soft, while high purity diamond crystals are very hard. Why are they different What features of the atomic (molecular) structures of materials determine how hard any particular crystal, or aggregate of crystals, is Not only are crystals of the chemical elements to be considered, but also compounds and alloys. Glasses can also be quite hard. Is it for similar reasons What about polymeric materials ... [Pg.5]

A predominant feature of the atomic structure of the lanthanide group is the sequential addition of 14 electrons to the 4f subshell (Table 1). The /"electrons do not participate in bond formation and in ordinary aqueous solutions all of the lanthanides exhibit a principal (III) state. The common (III) state confers a similarity in chemical properties to all lanthanide elements. Some of the lanthanides can also exist in the (II) state (Nd, Sm, Eu, Tm, Yh) or in the (IV) state (Ce, Pr, Nd, Tb, Dy). Except for Ce(IV), Eu(II), and Yb(II), these unusual lanthanide oxidation states can only be prepared under drastic redox pressure and temperature conditions, and they are not stable in aqueous solutions. Cerium (IV) is a strong oxidizing agent... [Pg.2]

For example, E. G. Mazurs (note 2, p. 105) expresses the discord as follows The periodicity of atomic structure must be accepted as a Natural Law. Therefore, scientists have to change their minds, get away from the conservatism that accepts only Mendeleev s chemical table as right, and adjust the other phenomena to this phenomenon that is, derive the chemical and physical properties of the elements from the electronic structure of the atoms. ... [Pg.722]

The process of classification is typically based on systematically arranging entities on the basis of their similarities and differences. A bowl of fruit can be systematically arranged to have apples on one side and bananas on the other. Chemical elements can be systematically arranged into distinct families on the basis of their atomic structures. Classification of this sort is relatively easy and can be grounded on any number of relatively distinctive parameters or combinations of parameters, including color, size, shape, structure, taste, and so forth. We have already noted that psychiatric disorders are best characterized as open concepts. In open psychiatric concepts, overt, objective, and distinctive parameters are often less apparent, making their classification considerably more difficult. [Pg.8]

Since co2 =K/m, the mean potential and kinetic energy terms are equal and the total energy of the linear oscillator is twice its mean kinetic energy. Since there are three oscillators per atom, for a monoatomic crystal U m =3RT and Cy m =3R = 2494 J K-1 mol-1. This first useful model for the heat capacity of crystals (solids), proposed by Dulong and Petit in 1819, states that the molar heat capacity has a universal value for all chemical elements independent of the atomic mass and crystal structure and furthermore independent of temperature. Dulong-Petit s law works well at high temperatures, but fails at lower temperatures where the heat capacity decreases and approaches zero at 0 K. More thorough models are thus needed for the lattice heat capacity of crystals. [Pg.233]

The hydrogen atom has the simplest atomic structure of all elements and consists of a nucleus and one electron. A neutral H atom can join a second electron, which forms the negative ion, H. Atomic hydrogen is formed as a result of different chemical reactions, but its lifetime is extremely short, as the atoms join each other to form a... [Pg.271]

In addition to atomism, the principal chemical theories of the nineteenth century included electrochemical dualism, the radical theory, the type theory, and the structure theory, the latter strongly identified with what chemists called the "law of linking" of carbon atoms. The valence theory evolved as a way of tying together the notions of chemical equivalence and chemical structure, and it carried along the old problem that some chemical elements (e.g., nitrogen) exhibit different combining values with another element in different circumstances. [Pg.129]

Concluding this section, we may mention a paper by Daams and Villars (1993) concerning an atomic environment classification of the chemical elements. Critically evaluated crystallographic data for all element modifications (and recommended atomic volumes) have been reported. Special structural stability diagrams were used to separate AET stability domains and to predict the structure (in terms of environment types) of hitherto unknown high-pressure and high-temperature modifications. Reference to the use of AET in thermodynamic (CALPHAD) modelling and calculation has been made by Ferro and Cacciamani (2002). [Pg.136]

Comments on some trends and on the Divides in the Periodic Table. It is clear that, on the basis also of the atomic structure of the different elements, the subdivision of the Periodic Table in blocks and the consideration of its groups and periods are fundamental reference tools in the description and classification of the properties and behaviour of the elements and in the definition of typical trends in such characteristics. Well-known chemical examples are the valence-electron numbers, the oxidation states, the general reactivity, etc. As far as the intermetallic reactivity is concerned, these aspects will be examined in detail in the various paragraphs of Chapter 5 where, for the different groups of metals, the alloying behaviour, its trend and periodicity will be discussed. A few more particular trends and classification criteria, which are especially relevant in specific positions of the Periodic Table, will be summarized here. [Pg.229]

A stage org chem) An early stage in a thermosetting resin reaction characterized by linear structure, solubility, and fusibility of the material. a, staj astatine chem A radioactive chemical element, symbol At, atomic number 85, the heaviest of the halogen elements. as-t3,ten asterism (spect) A star-shaped pattern sometimes seen in x-ray spectrophotographs. as-t3,riz-om ... [Pg.30]

Molecules are assembled from atoms of the chemical elements. Many elements form multiple chemical bonds in molecules. Among the elements, carbon is unique in its ability to form chains of atoms endlessly long. The structural chemistry of carbon is the richest of that for all the elements. [Pg.49]


See other pages where Chemical elements atomic structure is mentioned: [Pg.139]    [Pg.59]    [Pg.370]    [Pg.48]    [Pg.434]    [Pg.249]    [Pg.36]    [Pg.31]    [Pg.35]    [Pg.291]    [Pg.22]    [Pg.67]    [Pg.89]    [Pg.20]    [Pg.162]    [Pg.458]    [Pg.18]    [Pg.98]    [Pg.247]    [Pg.339]    [Pg.504]    [Pg.10]    [Pg.435]    [Pg.262]    [Pg.31]    [Pg.203]    [Pg.219]    [Pg.222]    [Pg.15]    [Pg.50]   
See also in sourсe #XX -- [ Pg.28 ]

See also in sourсe #XX -- [ Pg.2 ]




SEARCH



Chemical atom

Chemical elements

Element , 64 atomic structure

Structure element

© 2024 chempedia.info