Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Charge solvent molecules

Coupling HPLC with UVA S detection on-line to MS is state-of-the-art for quantification and qualification. If HPLC systems are coupled on-line to mass spectrometers the use of volatile buffers and solvents is required. In contrast to APCI, the yield and reproducibility of ESI depends on the presence of charged solvent molecules, hence the ionic strength -represented in most cases by organic acids- of the mobile phases used should be kept constant especially during gradient elution. [Pg.155]

Positive charge Negative charge Solvent molecule... [Pg.40]

Here the position r. of the point charges located on the solvent molecules is detemiined by the structure of... [Pg.839]

In either case, the structure of the solvation shell has to be calculated by otiier methods supplied or introduced ad hoc by some fiirther model assumptions, while charge distributions of the solute and within solvent molecules are obtained from quantum chemistry. [Pg.839]

By using an effective, distance-dependent dielectric constant, the ability of bulk water to reduce electrostatic interactions can be mimicked without the presence of explicit solvent molecules. One disadvantage of aU vacuum simulations, corrected for shielding effects or not, is the fact that they cannot account for the ability of water molecules to form hydrogen bonds with charged and polar surface residues of a protein. As a result, adjacent polar side chains interact with each other and not with the solvent, thus introducing additional errors. [Pg.364]

The explicit definition of water molecules seems to be the best way to represent the bulk properties of the solvent correctly. If only a thin layer of explicitly defined solvent molecules is used (due to hmited computational resources), difficulties may rise to reproduce the bulk behavior of water, especially near the border with the vacuum. Even with the definition of a full solvent environment the results depend on the model used for this purpose. In the relative simple case of TIP3P and SPC, which are widely and successfully used, the atoms of the water molecule have fixed charges and fixed relative orientation. Even without internal motions and the charge polarization ability, TIP3P reproduces the bulk properties of water quite well. For a further discussion of other available solvent models, readers are referred to Chapter VII, Section 1.3.2 of the Handbook. Unfortunately, the more sophisticated the water models are (to reproduce the physical properties and thermodynamics of this outstanding solvent correctly), the more impractical they are for being used within molecular dynamics simulations. [Pg.366]

Finally, the solvent also interacts with sites of the Lewis acid and the Lewis base that are not directly involved in mutual coordination, thereby altering the electronic properties of the complex. For example, delocalisation of charges into the surrounding solvent molecules causes ions in solution to be softer than in the gas phase . Again, water is particularly effective since it can act as an efficient electron pair acceptor as well as a donor. [Pg.31]

After being formed as a spray, many of the droplets contain some excess positive (or negative) electric charge. Solvent (S) evaporates from the droplets to form smaller ones until, eventually, ions (MH+, SH+) from the sample M and solvent begin to evaporate to leave even smaller drops and clusters (S H n = 1, 2, 3, etc.). Later, collisions between ions and molecules (Cl) leave MH+ ions that proceed into the mass analyzer. Negative ions are formed similarly. [Pg.62]

A solution of an analyte in a solvent can be sprayed (nebulized) from an electrically charged narrow tube to give small electrically charged droplets that desorb solvent molecules to leave ions of the analyte. This atmospheric-pressure ionization is known in various forms, the one most relevant to this section being called electrospray. For additional detail, see Chapters 8, 9, and 11. [Pg.65]

Evaporation of solvent from a spray of electrically charged droplets at atmospheric pressure eventually yields ions that can collide with neutral solvent molecules. The assemblage of ions formed by evaporation and collision is injected into the mass spectrometer for mass analysis. [Pg.391]

Charge-Transfer Compounds. Similat to iodine and chlorine, bromine can form charge-transfer complexes with organic molecules that can serve as Lewis bases. The frequency of the iatense uv charge-transfer adsorption band is dependent on the ionization potential of the donor solvent molecule. Electronic charge can be transferred from a TT-electron system as ia the case of aromatic compounds or from lone-pairs of electrons as ia ethers and amines. [Pg.284]

A theoretical description of hydrogen bonding effects can be made from model of charge-controlled adsorption. It was found that the energy of adsorption of organic molecules ai e determined by the ratios between the effective chai ges of their atoms and atoms in polai solvent molecules ... [Pg.138]

As for the dielectric constant, when explicit solvent molecules are included in the calculations, a value of 1, as in vacuum, should be used because the solvent molecules themselves will perform the charge screening. The omission of explicit solvent molecules can be partially accounted for by the use of an / -dependent dielectric, where the dielectric constant increases as the distance between the atoms, increases (e.g., at a separation of 1 A the dielectric constant equals 1 at a 3 A separation the dielectric equals 3 and so on). Alternatives include sigmoidal dielectrics [80] however, their use has not been widespread. In any case, it is important that the dielectric constant used for a computation correspond to that for which the force field being used was designed use of alternative dielectric constants will lead to improper weighting of the different electrostatic interactions, which may lead to significant errors in the computations. [Pg.22]

The treatment of electrostatics and dielectric effects in molecular mechanics calculations necessary for redox property calculations can be divided into two issues electronic polarization contributions to the dielectric response and reorientational polarization contributions to the dielectric response. Without reorientation, the electronic polarization contribution to e is 2 for the types of atoms found in biological systems. The reorientational contribution is due to the reorientation of polar groups by charges. In the protein, the reorientation is restricted by the bonding between the polar groups, whereas in water the reorientation is enhanced owing to cooperative effects of the freely rotating solvent molecules. [Pg.399]

The simulations to investigate electro-osmosis were carried out using the molecular dynamics method of Murad and Powles [22] described earher. For nonionic polar fluids the solvent molecule was modeled as a rigid homo-nuclear diatomic with charges q and —q on the two active LJ sites. The solute molecules were modeled as spherical LJ particles [26], as were the molecules that constituted the single molecular layer membrane. The effect of uniform external fields with directions either perpendicular to the membrane or along the diagonal direction (i.e. Ex = Ey = E ) was monitored. The simulation system is shown in Fig. 2. The density profiles, mean squared displacement, and movement of the solvent molecules across the membrane were examined, with and without an external held, to establish whether electro-osmosis can take place in polar systems. The results clearly estab-hshed that electro-osmosis can indeed take place in such solutions. [Pg.786]

FIG. 6 Effect of an electric field on the resultant number of solvent molecules permeating the membrane as a function of time for the case of charged solute molecules, and nonpolar homonuclear solvent molecules. R refers to the field being periodically reversed [26]. [Pg.789]

In some cases, e.g., the Hg/NaF q interface, Q is charge dependent but concentration independent. Then it is said that there is no specific ionic adsorption. In order to interpret the charge dependence of Q a standard explanation consists in assuming that Q is related to the existence of a solvent monolayer in contact with the wall [16]. From a theoretical point of view this monolayer is postulated as a subsystem coupled with the metal and the solution via electrostatic and non-electrostatic interactions. The specific shape of Q versus a results from the competition between these interactions and the interactions between solvent molecules in the mono-layer. This description of the electrical double layer has been revisited by... [Pg.804]

The interaction between a solute species and solvent molecules is called solvation, or hydration in aqueous solution. This phenomenon stabilizes separated charges and makes possible heterolytic reactions in solution. Solvation is, therefore, an important subject in solution chemistry. The solvation of ions has been most thoroughly studied. [Pg.401]


See other pages where Charge solvent molecules is mentioned: [Pg.37]    [Pg.63]    [Pg.37]    [Pg.63]    [Pg.584]    [Pg.595]    [Pg.839]    [Pg.44]    [Pg.191]    [Pg.196]    [Pg.220]    [Pg.341]    [Pg.608]    [Pg.609]    [Pg.206]    [Pg.338]    [Pg.191]    [Pg.196]    [Pg.56]    [Pg.57]    [Pg.67]    [Pg.67]    [Pg.68]    [Pg.451]    [Pg.49]    [Pg.133]    [Pg.204]    [Pg.237]    [Pg.238]    [Pg.148]    [Pg.348]    [Pg.789]    [Pg.404]    [Pg.102]   
See also in sourсe #XX -- [ Pg.132 ]




SEARCH



Charged molecules

Molecules charges

Solvent molecules

Solvent molecules, charge trapping

© 2024 chempedia.info