Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cerium promoter

Park PW, Ledford JS (1998) The influence of surface structure on the catalytic activity of cerium promoted copper oxide catalysts on alumina oxidation of carbon monoxide and methane. Catal Lett 50(1—2) 41 48... [Pg.313]

The two catalysts reporetd here, both commercial VOC oxidation catalysts, are a cerium-promoted Hopcalite (Catalyst A), and a chromia/alumina (Catalyst B). catalyst B was designed primarialy for fluid-bed operation, but has been studied here in both fixed-and fluid-bed application. Catalyst A has been studied only in fixed-bed studies Further data on these materials, as well on the performance of a Pt/Ni/alumina catalyst, are given in [2]. [Pg.20]

Hutchings (170) plotted (Figure 31) the activity against the surface area for a number of promoted catalysts and deduced that most of the catalysts conform to a linear correlation. The only enhancement of the specific activity was observed for the cerium-promoted catalyst. This result shows that care must be taken in the interpretation of the catalyst performance data, particularly when catalysts prepared by different methods are compared. In a separate study, Hutchings and Higgins (171) found that chromium, niobium, palladium, antimony, ruthenium, thorium, zinc, and zirconium each had very little effect on the specific activity of (VO)2P207. A significant increase in surface area was observed with zirconium, zinc, and chromium, which could be of use as structural promoters. Iron-, cesium-, and silver-doped catalysts decreased the specific activity, and cobalt and molybdenum were the only promoters found to increase the specific activity. [Pg.223]

Bej and Rao (186-190) conducted a detailed investigation of molybdenum- and cerium-promoted vanadium phosphate catalysts. They foimd an increase in the selectivities of these catalysts as a result of incorporation of the promoters, albeit with slight decreases in activity. They attributed the improved selectivity to a role of the promoters in preventing overoxidation of the MA to carbon oxides. They also found that the promoted catalysts could withstand more severe reaction conditions than the unpromoted catalyst, and this property was also attributed to the formation of less carbon oxides, which can poison the catalyst. [Pg.226]

Bej and Rao [166-170] conducted a detailed study of molybdenum- and cerium-promoted vanadium phosphate catalysts. They found an increase in the selechvity... [Pg.521]

For waste management, cerium-promoted dissolution has another important characteristic relative to fluoride dissolution. [Pg.371]

Variation in cerium promoter level has no effect on CO performance when H O is absent from the feedgas stream. With H O present in the feedgas CO performance is higher and increases with increased cerium loading. This is consistent with an enhancement of the water-gas shift reaction upon addition of cerium to Pt/Rh three-way catalysts. This enhanced performance is at least partially transient in nature with CO conversions dropping below 50% under steady state conditions. [Pg.133]

These results show that a Pt/Rh catalyst system, based upon a stabilized alumina wash coat designed to minimize the adverse effects of strong Rh/Al O interactions and a high cerium promoter level for enhanced CO performance and stability, should result in significantly improved three-way catalyst performance and durability. [Pg.133]

The cerium promoted support exhibits similar changes in the phase composition upon thermal treatment of the samples containing 7 and 15% of copper. At low copper content (2% of Cu), CuO phase is not observed through the whole temperature range. At 1273 K, only 50% of alumina which does not convert into a stochiometiic spinel CUAI2O4, transform into a-form. The complete transformation into a-Al203 is observed at higher concentrations of the supported copper. All the samples contain cerium only as the oxide phase. [Pg.1146]

Lee C-H, Ng DKP (2002) Cerium promoted fotmation of meted-free phthalocyanines. Tetrahedron Lett 43 4211-4214... [Pg.677]

Catalysts used for preparing amines from alcohols iaclude cobalt promoted with tirconium, lanthanum, cerium, or uranium (52) the metals and oxides of nickel, cobalt, and/or copper (53,54,56,60,61) metal oxides of antimony, tin, and manganese on alumina support (55) copper, nickel, and a metal belonging to the platinum group 8—10 (57) copper formate (58) nickel promoted with chromium and/or iron on alumina support (53,59) and cobalt, copper, and either iron, 2iac, or zirconium (62). [Pg.221]

Catalysts. In industrial practice the composition of catalysts are usuaUy very complex. Tellurium is used in catalysts as a promoter or stmctural component (84). The catalysts are used to promote such diverse reactions as oxidation, ammoxidation, hydrogenation, dehydrogenation, halogenation, dehalogenation, and phenol condensation (85—87). Tellurium is added as a passivation promoter to nickel, iron, and vanadium catalysts. A cerium teUurium molybdate catalyst has successfliUy been used in a commercial operation for the ammoxidation of propylene to acrylonitrile (88). [Pg.392]

In addition to platinum and related metals, the principal active component ia the multiflmctioaal systems is cerium oxide. Each catalytic coaverter coataias 50—100 g of finely divided ceria dispersed within the washcoat. Elucidatioa of the detailed behavior of cerium is difficult and compHcated by the presence of other additives, eg, lanthanum oxide, that perform related functions. Ceria acts as a stabilizer for the high surface area alumina, as a promoter of the water gas shift reaction, as an oxygen storage component, and as an enhancer of the NO reduction capability of rhodium. [Pg.370]

Cerium oxide acts as a catalytic oxidizer in a spinel-based additive (38) that aids SO2 to SO conversion and promotes the required sulfate formation. Bastnasite itself is the most economical source of cerium and can be used directly at 1% as the capture additive (39). [Pg.371]

Dehydrogenation, Ammoxidation, and Other Heterogeneous Catalysts. Cerium has minor uses in other commercial catalysts (41) where the element s role is probably related to Ce(III)/Ce(IV) chemistry. Styrene is made from ethylbenzene by an alkah-promoted iron oxide-based catalyst. The addition of a few percent of cerium oxide improves this catalyst s activity for styrene formation presumably because of a beneficial interaction between the Fe(II)/Fe(III) and Ce(III)/Ce(IV) redox couples. The ammoxidation of propjiene to produce acrylonitrile is carried out over catalyticaHy active complex molybdates. Cerium, a component of several patented compositions (42), functions as an oxygen and electron transfer through its redox couple. [Pg.371]

Paint Driers and Polymer Additives. Paints based on alkyd resins (qv) dry by the oxidation and cross-linking of unsaturated side chains. Metal catalysts are included in paint formulations to promote this drying. Cerium carboxylates, eg, the naphthenate, are used as through driers, ie, to promote drying in the body of the paint film rather than at the film s surface (44). [Pg.371]

A.ctive driers promote oxygen uptake, peroxide formation, and peroxide decomposition. At an elevated temperature several other metals display this catalytic activity but are ineffective at ambient temperature. Active driers include cobalt, manganese, iron, cerium, vanadium, and lead. [Pg.221]

Cerium/Rare Earth. Cerium 2-ethyIhexanoate [56797-01-4] and rare-earth driers promote polymerization and through dry. Like iron they are active at elevated temperature and, since they do not contribute to film discoloration, are recommended for white bake finishes and overprint varnishes where color is critical. Rare earths also find use at the other end of the temperature spectmm in coatings dried at low temperature and high humidity. [Pg.221]

Fillers can also be used to promote or enhance the thermal stability of the silicone adhesive. Normal silicone systems can withstand exposure to temperatures of 200 C for long hours without degradation. However, in some applications the silicone must withstand exposure to temperatures of 280 C. This can be achieved by adding thermal stabilizers to the adhesive formulations. These are mainly composed of metal oxides such as iron oxide and cerium oxide, copper organic complexes, or carbon black. The mechanisms by which the thermal stabilization occurs are discussed in terms of radical chemistry. [Pg.692]

Returning to the explanation of induced reactions, we can say the following. Friend s proposal , according to which the error in the H2O2 determination is caused by reaction (83) catalyzed by manganese(II) or cerium(III) formed in the primary reaction between hydrogen peroxide and permanganate or cerium(IV) cannot be accepted. The reaction between the ions mentioned and peroxydisulphate at room temperature is very slow, and, furthermore, the increase in acidity —in contrast to its effect on the induced reaction —promotes the oxidation. There is... [Pg.558]

An oxidative radical coupling promoted by tetra-ra-butylammonium cerium(IV) nitrate (TB ACN) between P-aminocinnamate 22 and enamine 23 provided pyrrole-3,4-dicarboxylate 24 <06T2235>. Dimerization of the P-aminocinnamates provided symmetrical pyrroles. [Pg.138]

Catalyst systems for the WGS reaction that have recently received significant attention are the cerium oxides, mostly loaded with noble metals, especially platinum 42—46]. Jacobs et al. [44] even claim that it is probable that promoted ceria catalysts with the right development should realize higher CO conversions than the commercial Cu0-Zn0-Al203 catalysts. Ceria doped with transition metals such as Ni, Cu, Fe, and Co are also very interesting catalysts 37,43—471, especially the copper-ceria catalysts that have been found to perform excellently in the WGS reaction, as reported by Li et al. [37], They have found that the copper-ceria catalysts are more stable than other Cu-based LT WGS catalysts and at least as active as the precious metal-ceria catalysts. [Pg.207]

R G. Harrison, I. K. Ball, W. Azelee, W. Daniell, and D. Goldfarb, Nature and surface redox properties of copper(ll)-promoted cerium(lV) oxide CO oxidation catalysts, Chem. Mater. 12, 3715-3725 (2000). [Pg.219]

This paper identifies alumina, rare earths, platinum, and magnesia as important SOx capture materials. Alumina is either incorporated directly into the matrix of a cracking catalyst or added as a separate particle. Cerium is shown to promote the capture of SO2 on high alumina cracking catalyst, alumina, and magnesia. Other rare earths are ranked by their effectiveness. The promotional effect of platinum is shown between 1200 and 1400 F for SO2 capture on alumina. Silica, from free silica or silica-alumina in the matrix of cracking catalyst, acts as a poison by migrating to the additive. [Pg.114]


See other pages where Cerium promoter is mentioned: [Pg.295]    [Pg.132]    [Pg.118]    [Pg.253]    [Pg.129]    [Pg.1148]    [Pg.242]    [Pg.786]    [Pg.314]    [Pg.52]    [Pg.295]    [Pg.132]    [Pg.118]    [Pg.253]    [Pg.129]    [Pg.1148]    [Pg.242]    [Pg.786]    [Pg.314]    [Pg.52]    [Pg.303]    [Pg.422]    [Pg.481]    [Pg.369]    [Pg.503]    [Pg.452]    [Pg.83]    [Pg.233]    [Pg.346]    [Pg.352]    [Pg.219]    [Pg.224]    [Pg.226]    [Pg.209]    [Pg.404]   
See also in sourсe #XX -- [ Pg.418 ]




SEARCH



© 2024 chempedia.info