Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Central nervous system transport

The blood-brain barrier (BBB) forms a physiological barrier between the central nervous system and the blood circulation. It consists of glial cells and a special species of endothelial cells, which form tight junctions between each other thereby inhibiting paracellular transport. In addition, the endothelial cells of the BBB express a variety of ABC-transporters to protect the brain tissue against toxic metabolites and xenobiotics. The BBB is permeable to water, glucose, sodium chloride and non-ionised lipid-soluble molecules but large molecules such as peptides as well as many polar substances do not readily permeate the battier. [Pg.272]

Neuromedin U is a neuropeptide which is widely distributed in the gut and central nervous system. Peripheral activities of neuromedin U include stimulation of smooth muscle, increase in blood pressure, alteration of ion transport in the gut, control of local blood flow and regulation of adrenocortical function. The actions of neuromedin U are mediated by G-protein coupled receptors (NMU1, NMU2) which are coupled tO Gq/11. [Pg.828]

Enterochromaffin cells are interspersed with mucosal cells mainly in the stomach and small intestine. In the blood, serotonin is present at high concentrations in platelets, which take up serotonin from the plasma by an active transport process. Serotonin is released on platelet activation. In the central nervous system, serotonin serves as a transmitter. The main serotonin-containing neurons are those clustered in form of the Raphe nuclei. Serotonin exerts its biological effects through the activation of specific receptors. Most of them are G-protein coupled receptors (GPCRs) and belong to the 5-HTr, 5-HT2-, 5-HT4-, 5-HTs-, 5-HT6-, 5-HT7-receptor subfamilies. The 5-HT3-receptor is a ligand-operated ion channel. [Pg.1120]

The various stimulants have no obvious chemical relationships and do not share primary neurochemical effects, despite their similar behavioral effects. Cocaines chemical strucmre does not resemble that of caffeine, nicotine, or amphetamine. Cocaine binds to the dopamine reuptake transporter in the central nervous system, effectively inhibiting dopamine reuptake. It has similar effects on the transporters that mediate norepinephrine and serotonin reuptake. As discussed later in this chapter in the section on neurochemical actions mediating stimulant reward, dopamine is very important in the reward system of the brain the increase of dopamine associated with use of cocaine probably accounts for the high dependence potential of the drug. [Pg.186]

Russ, H, Staust, K, Martel, R, Gliess, M and Schomig, E (1996) The extracellular transporter for monoamine transmitters exists in cells derived from human central nervous system glia. Eur. J. [Pg.186]

Kelder et al. [19] have shown that PSA can be used to model oral absorption and brain penetration of drugs that are transported by the transcellular route. A good correlation was found between brain penetration and PSA (n=45, r=0.917). From analyzing a set of 2366 central nervous system (CNS) and non-CNS oral drugs that have reached at least phase 11 clinical trials it was concluded that orally active drugs that are transported passively by the transcellular route should have PSA< 120 Al In addition, different PSA distributions were found for CNS and non-CNS drugs. [Pg.444]

The presence of particles in the brains of experimental rats and humans exposed to asbestos has been reported (Pontefiart and Cunningham, 1973 Auerbach et al., 1980). In experimental studies, particles of Teflon, a reflux paste, enter the brain via intravascular transport when injected into the bladder (Aaronson et al., 1993). Encephalitic reactions to accumulated calcium oxalate crystals in the brain as a result of infusions of glucose surrogate polyol solutions have been described (PciflPcr etal., 1984). Such studies indicate the capacity of particulates to enter the brain and thus pose a potential pathological threat to the functioning of the central nervous system (CNS). [Pg.252]

The transport of information from sensors to the central nervous system and of instructions from the central nervous system to the various organs occurs through electric impulses transported by nerve cells (see Fig. 6.17). These cells consist of a body with star-like projections and a long fibrous tail called an axon. While in some molluscs the whole membrane is in contact with the intercellular liquid, in other animals it is covered with a multiple myeline layer which is interrupted in definite segments (nodes of Ranvier). The Na+,K+-ATPase located in the membrane maintains marked ionic concentration differences in the nerve cell and in the intercellular liquid. For example, the squid axon contains 0.05 MNa+, 0.4 mK+, 0.04-0.1 m Cl-, 0.27 m isethionate anion and 0.075 m aspartic acid anion, while the intercellular liquid contains 0.46 m Na+, 0.01 m K+ and 0.054 m Cl-. [Pg.465]

Ibberson, M., M. Uldry, and B. Thorens. GLUTX1, a novel mammalian glucose transporter expressed in the central nervous system and insulin-sensitive tissues. J. Biol. Chem. 2000, 275, 4607-4612. [Pg.282]

The lipid compositions of plasma membranes, endoplasmic reticulum and Golgi membranes are distinct 26 Cholesterol transport and regulation in the central nervous system is distinct from that of peripheral tissues 26 In adult brain most cholesterol synthesis occurs in astrocytes 26 The astrocytic cholesterol supply to neurons is important for neuronal development and remodeling 27 The structure and roles of membrane microdomains (rafts) in cell membranes are under intensive study but many aspects are still unresolved 28... [Pg.21]

Cholesterol transport and regulation in the central nervous system is distinct from that of peripheral tissues. Blood-borne cholesterol is excluded from the CNS by the blood-brain barrier. Neurons express a form of cytochrome P-450, 46A, that oxidizes cholesterol to 24(S)-hydroxycholesterol [11] and may oxidize it further to 24,25 and 24,27-dihydroxy products [12]. In other tissues hydroxylation of the alkyl side chain of cholesterol at C22 or C27 is known to produce products that diffuse out of cells into the plasma circulation. Although the rate of cholesterol turnover in mature brain is relatively low, 24-hydroxylation may be a principal efflux path to the liver because it is not further oxidized in the CNS [10]. [Pg.26]

Krajnak, K., Rosewell, K. L., Duncan, M. J. and Wise, P. M. Aging, estradiol and time of day differentially affect serotonin transporter binding in the central nervous system of female rats. Brain Res. 990 87-94, 2003. [Pg.248]

Bergersen, L., Rafiki, A. and Ottersen, O. P. Immunogold cytochemistry identifies specialized membrane domains for monocarboxylate transport in the central nervous system. Neurochem. Res. 27 89-96, 2002. [Pg.553]


See other pages where Central nervous system transport is mentioned: [Pg.238]    [Pg.238]    [Pg.66]    [Pg.381]    [Pg.95]    [Pg.263]    [Pg.291]    [Pg.139]    [Pg.444]    [Pg.516]    [Pg.545]    [Pg.840]    [Pg.1222]    [Pg.1281]    [Pg.247]    [Pg.24]    [Pg.161]    [Pg.378]    [Pg.226]    [Pg.41]    [Pg.92]    [Pg.91]    [Pg.1231]    [Pg.192]    [Pg.45]    [Pg.82]    [Pg.91]    [Pg.348]    [Pg.379]    [Pg.67]    [Pg.255]    [Pg.313]    [Pg.472]    [Pg.725]    [Pg.797]    [Pg.1563]    [Pg.147]    [Pg.161]    [Pg.175]   
See also in sourсe #XX -- [ Pg.733 ]




SEARCH



Systemic Transport

Transport systems

Transport systems/transporters

© 2024 chempedia.info