Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cells redox potential

Number of active cells, redox potential, activity, velocity, etc. [Pg.237]

Consider the difference between two related half-cell redox potentials. [Pg.262]

Ostwald had what appeared to be a very elegant concept. It involved the measurement of a single electrode potential. The method of measurement was in good accordance with his philosophical views and with the chemistry of the times, and it would, in his opinion, yield an absolute potential. An absolute potential was a sharp contrast to the relative potential obtained by referring a measured half-cell to another single electrode reaction arbitrarily set at zero. Ostwald s measurements of half-cell potentials could be directly related to heats of ionization (1 ). In his opinion, an absolute half-cell redox potential would allow the establishment of an electromotive series which would be analogous to the absolute temperature scale. [Pg.130]

We have seen that the energetic feasibility of a reaction can be deduced from redox potential data. It is also possible to deduce the theoretical equilibrium position for a reaction. In Chapter 3 we saw that when AG = 0 the system is at equilibrium. Since AG = — nFE. this means that the potential of the cell must be zero. Consider once again the reaction... [Pg.104]

As a result, the electromotive force (EMF) of the cell is zero In the presence of fluoride ions, cerium(IV) forms a complex with fluoride ions that lowers the cerium(IV)-cerium(IIl) redox potential The inner half-cell is smaller, and so only 5 mL of cerium(IV)-cenum (III) solution is added To the external half-cell, 50 mL of the solution is added, but the EMF of the cell is still zero When 10 mL of the unknown fluonde solution is added to the inner half-cell, 100 mL of distilled water IS added to the external half-cell The solution in the external half-cell is mixed thoroughly by turning on the stirrer, and 0 5 M sodium fluonde solution is added from the microburet until the null point is reached The quantity of known fluonde m the titrant will be 10 times the quantity of the unknown fluoride sample, and so the microburet readings must be corrected prior to actual calculations... [Pg.1026]

Some typical half-cell reactions and their respective standard reduction potentials are listed in Table 21.1. Whenever reactions of this type are tabulated, they are uniformly written as reduction reactions, regardless of what occurs in the given half-cell. The sign of the standard reduction potential indicates which reaction really occurs when the given half-cell is combined with the reference hydrogen half-cell. Redox couples that have large positive reduction potentials... [Pg.676]

The precautions generally applicable to the preparation, exposure, cleaning and assessment of metal test specimens in tests in other environments will also apply in the case of field tests in the soil, but there will be additional precautions because of the nature of this environment. Whereas in the case of aqueous, particularly sea-water, and atmospheric environments the physical and chemical characteristics will be reasonably constant over distances covering individual test sites, this will not necessarily be the case in soils, which will almost inevitably be of a less homogeneous nature. The principal factors responsible for the corrosive nature of soils are the presence of bacteria, the chemistry (pH and salt content), the redox potential, electrical resistance, stray currents and the formation of concentration cells. Several of these factors are interrelated. [Pg.1076]

This fact was verified experimentally by Paneth and Hevesy, who found that the redox potentials of bismuth cells containing different isotopes of the metal produced indistinguishable values. [Pg.132]

Three kinds of equilibrium potentials are distinguishable. A metal-ion potential exists if a metal and its ions are present in balanced phases, e.g., zinc and zinc ions at the anode of the Daniell element. A redox potential can be found if both phases exchange electrons and the electron exchange is in equilibrium for example, the normal hydrogen half-cell with an electron transfer between hydrogen and protons at the platinum electrode. In the case where a couple of different ions are present, of which only one can cross the phase boundary — a situation which may exist at a semiperme-able membrane — one obtains a so called membrane potential. Well-known examples are the sodium/potassium ion pumps in human cells. [Pg.10]

Beginning in the early 1980s [20, 21] metallic lithium was replaced by lithium insertion materials having a lower standard redox potential than the positive insertion electrode this resulted in a "Li-ion" or "rocking-chair" cell with both negative and positive electrodes capable of reversible lithium insertion (see recommended papers and review papers [7, 10, 22-28]). Various insertion materials have been proposed for the anode of rechargeable lithium batteries,... [Pg.384]

Figure 2. Redox potentials for lithium insertion into/removal from several anode materials for lithium cells. Figure 2. Redox potentials for lithium insertion into/removal from several anode materials for lithium cells.
The Rieske protein II (SoxF) from Sulfolobus acidocaldarius, which is part, not of a bci or b f complex, but of the SoxM oxidase complex 18), could be expressed in E. coli, both in a full-length form containing the membrane anchor and in truncated water-soluble forms 111). In contrast to the results reported for the Rieske protein from Rhodobacter sphaeroides, the Rieske cluster was more efficiently inserted into the truncated soluble forms of the protein. Incorporation of the cluster was increased threefold when the E. coli cells were subject to a heat shock (42°C for 30 min) before induction of the expression of the Rieske protein, indicating that chaperonins facilitate the correct folding of the soluble form of SoxF. The iron content of the purified soluble SoxF variant was calculated as 1.5 mol Fe/mol protein the cluster showed g values very close to those observed in the SoxM complex and a redox potential of E° = +375 mV 111). [Pg.146]

The photoelectrolysis of H2O can be performed in cells being very similar to those applied for the production of electricity. They differ only insofar as no additional redox couple is used in a photoelectrolysis cell. The energy scheme of corresponding systems, semiconductor/liquid/Pt, is illustrated in Fig. 9, the upper scheme for an n-type, the lower for a p-type electrode. In the case of an n-type electrode the hole created by light excitation must react with H2O resulting in 02-formation whereas at the counter electrode H2 is produced. The electrolyte can be described by two redox potentials, E°(H20/H2) and E (H20/02) which differ by 1.23 eV. At equilibrium (left side of Fig. 9) the electrochemical potential (Fermi level) is constant in the whole system and it occurs in the electrolyte somewhere between the two standard energies E°(H20/H2) and E°(H20/02). The exact position depends on the relative concentrations of H2 and O2. Illuminating the n-type electrode the electrons are driven toward the bulk of the semiconductor and reach the counter electrode via the external circuit at which they are consumed for Hj-evolution whereas the holes are dir tly... [Pg.97]


See other pages where Cells redox potential is mentioned: [Pg.35]    [Pg.35]    [Pg.1939]    [Pg.99]    [Pg.400]    [Pg.389]    [Pg.2131]    [Pg.2133]    [Pg.2145]    [Pg.385]    [Pg.385]    [Pg.70]    [Pg.178]    [Pg.1308]    [Pg.419]    [Pg.7]    [Pg.214]    [Pg.215]    [Pg.217]    [Pg.220]    [Pg.221]    [Pg.241]    [Pg.243]    [Pg.255]    [Pg.267]    [Pg.139]    [Pg.53]    [Pg.205]    [Pg.286]    [Pg.91]    [Pg.91]    [Pg.191]    [Pg.621]    [Pg.640]    [Pg.646]   
See also in sourсe #XX -- [ Pg.197 ]




SEARCH



Cell potentials

Cells equilibrium redox potential constant

Half-cells redox potential

Redox cells

Redox potential within cells

Redox potentials

© 2024 chempedia.info