Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cations aqueous solutions

Figure A2.4.3. The localized structure of a hydrated metal cation in aqueous solution (the metal ion being assumed to have a primary hydration number of six). From [5]. Figure A2.4.3. The localized structure of a hydrated metal cation in aqueous solution (the metal ion being assumed to have a primary hydration number of six). From [5].
The hydration of more inert ions has been studied by O labelling mass spectrometry. 0-emiched water is used, and an equilibrium between the solvent and the hydration around the central ion is first attained, after which the cation is extracted rapidly and analysed. The method essentially reveals the number of oxygen atoms that exchange slowly on the timescale of the extraction, and has been used to establish the existence of the stable [1 10304] cluster in aqueous solution. [Pg.568]

The ability of living organisms to differentiate between the chemically similar sodium and potassium ions must depend upon some difference between these two ions in aqueous solution. Essentially, this difference is one of size of the hydrated ions, which in turn means a difference in the force of electrostatic (coulombic) attraction between the hydrated cation and a negatively-charged site in the cell membrane thus a site may be able to accept the smaller ion Na (aq) and reject the larger K (aq). This same mechanism of selectivity operates in other ion-selection processes, notably in ion-exchange resins. [Pg.124]

All the cations of Group I produce a characteristic colour in a flame (lithium, red sodium, yellow potassium, violet rubidium, dark red caesium, blue). The test may be applied quantitatively by atomising an aqueous solution containing Group I cations into a flame and determining the intensities of emission over the visible spectrum with a spectrophotometer Jlame photometry). [Pg.136]

The larger cations of Group 1 (K, Rb, Cs) can be precipitated from aqueous solution as white solids by addition of the reagent sodium tetraphenylborate, NaB(C( H5)4. Sodium can be precipitated as the yellow sodium zinc uranium oxide ethanoate (sodium zinc uranyl acetate). NaZn(U02)3(CH3C00)y. 9H2O. by adding a clear solution of zinc uranyl acetate in dilute ethanoic acid to a solution of a sodium salt. [Pg.136]

The best known polyhalide is the triiodide ion, Ij", found when iodine dissolves in the aqueous solution of the iodide of a large unipositive cation (usually K ) ... [Pg.346]

Table 14.2 shows that all three elements have remarkably low melting points and boiling points—an indication of the weak metallic bonding, especially notable in mercury. The low heat of atomisation of the latter element compensates to some extent its higher ionisation energies, so that, in practice, all the elements of this group can form cations in aqueous solution or in hydrated salts anhydrous mercuryfll) compounds are generally covalent. [Pg.434]

Phenyldiazonium chloride and other similar diazonium compounds are very soluble in water, are completely insoluble in ether and other organic solvents, and are completely dissociated in aqueous solution to organic cations and inorganic anions (e.g., chloride ions) a convenient formulation is therefore, for example, CjHjNj+CP. [Pg.590]

Primary arylamines like primary alkylammes form diazonium ion salts on nitro sation Aryl diazonium 10ns are considerably more stable than their alkyl counterparts Whereas alkyl diazonium 10ns decompose under the conditions of their formation aryl diazonium salts are stable enough to be stored m aqueous solution at 0-5°C for a rea sonable time Loss of nitrogen from an aryl diazonium ion generates an unstable aryl cation and is much slower than loss of nitrogen from an alkyl diazonium ion... [Pg.945]

Cationic monomers are used to enhance adsorption on waste soHds and faciHtate flocculation (31). One of the first used in water treatment processes (10) is obtained by the cyclization of dimethyldiallylammonium chloride in 60—70 wt % aqueous solution (43) (see Water). Another cationic water-soluble polymer, poly(dimethylarnine-fi9-epichlorohydrin) (11), prepared by the step-growth... [Pg.318]

The actinide elements exhibit uniformity in ionic types. In acidic aqueous solution, there are four types of cations, and these and their colors are hsted in Table 5 (12—14,17). The open spaces indicate that the corresponding oxidation states do not exist in aqueous solution. The wide variety of colors exhibited by actinide ions is characteristic of transition series of elements. In general, protactinium(V) polymerizes and precipitates readily in aqueous solution and it seems unlikely that ionic forms ate present in such solutions. [Pg.218]

Iron hahdes react with haHde salts to afford anionic haHde complexes. Because kon(III) is a hard acid, the complexes that it forms are most stable with F and decrease ki both coordination number and stabiHty with heavier haHdes. No stable F complexes are known. [FeF (H20)] is the predominant kon fluoride species ki aqueous solution. The [FeF ] ion can be prepared ki fused salts. Whereas six-coordinate [FeCy is known, four-coordinate complexes are favored for chloride. Salts of tetrahedral [FeCfy] can be isolated if large cations such as tetraphenfyarsonium or tetra alkylammonium are used. [FeBrJ is known but is thermally unstable and disproportionates to kon(II) and bromine. Complex anions of kon(II) hahdes are less common. [FeCfy] has been obtained from FeCfy by reaction with alkaH metal chlorides ki the melt or with tetraethyl ammonium chloride ki deoxygenated ethanol. [Pg.436]

In aqueous solutions, trivalent lanthanides ate very stable whereas only a limited number of lanthanides exhibit a stable divalent or tetravalent state. Practically, only Ce and Eu " exist in aqueous solutions. The properties of these cations ate very different from the properties of the trivalent lanthanides. For example, Ce" " is mote acidic and cetium(IV) hydroxide precipitates at pH 1. Eu " is less acidic and eutopium(II) hydroxide does not precipitate at pH 7—8.5, whereas trivalent lanthanide hydroxides do. Some industrial separations ate based on these phenomena. [Pg.541]

The fourth fully developed membrane process is electrodialysis, in which charged membranes are used to separate ions from aqueous solutions under the driving force of an electrical potential difference. The process utilizes an electrodialysis stack, built on the plate-and-frame principle, containing several hundred individual cells formed by a pair of anion- and cation-exchange membranes. The principal current appHcation of electrodialysis is the desalting of brackish groundwater. However, industrial use of the process in the food industry, for example to deionize cheese whey, is growing, as is its use in poUution-control appHcations. [Pg.76]

Structure Modification. Several types of stmctural defects or variants can occur which figure in adsorption and catalysis (/) surface defects due to termination of the crystal surface and hydrolysis of surface cations (2) stmctural defects due to imperfect stacking of the secondary units, which may result in blocked channels (J) ionic species, eg, OH , AIO 2, Na", SiO , may be left stranded in the stmcture during synthesis (4) the cation form, acting as the salt of a weak acid, hydrolyzes in aqueous suspension to produce free hydroxide and cations in solution and (5) hydroxyl groups in place of metal cations may be introduced by ammonium ion exchange, followed by thermal deammoniation. [Pg.447]


See other pages where Cations aqueous solutions is mentioned: [Pg.135]    [Pg.442]    [Pg.310]    [Pg.73]    [Pg.73]    [Pg.55]    [Pg.135]    [Pg.442]    [Pg.310]    [Pg.73]    [Pg.73]    [Pg.55]    [Pg.86]    [Pg.207]    [Pg.271]    [Pg.573]    [Pg.2601]    [Pg.2784]    [Pg.2785]    [Pg.2786]    [Pg.139]    [Pg.249]    [Pg.284]    [Pg.285]    [Pg.368]    [Pg.393]    [Pg.401]    [Pg.407]    [Pg.437]    [Pg.164]    [Pg.318]    [Pg.62]    [Pg.80]    [Pg.449]    [Pg.302]    [Pg.523]    [Pg.544]    [Pg.504]    [Pg.506]    [Pg.171]    [Pg.299]    [Pg.451]   
See also in sourсe #XX -- [ Pg.53 , Pg.61 ]




SEARCH



Acidity of Cations in Aqueous Solution

Aqueous cations

Aqueous solution cation exchange

Aqueous waste solutions, cation exchange

Cation Exchange in Aqueous Solution

Cation solutions

Cationic solute

Cations in aqueous solution

Cations solutes

The hydrolysis of cations in aqueous solution

© 2024 chempedia.info