Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cations active transport

Calcium is absorbed from the intestine by facilitated diffusion and active transport. In the former, Ca " moves from the mucosal to the serosal compartments along a concentration gradient. The active transport system requires a cation pump. In both processes, a calcium-binding protein (CaBP) is thought to be required for the transport. Synthesis of CaBP is activated by 1,25-DHCC. In the active transport, release of Ca " from the mucosal cell into... [Pg.376]

The gradients of H, Na, and other cations and anions established by ATPases and other energy sources can be used for secondary active transport of various substrates. The best-understood systems use Na or gradients to transport amino acids and sugars in certain cells. Many of these systems operate as symports, with the ion and the transported amino acid or sugar moving in the same direction (that is, into the cell). In antiport processes, the ion and the other transported species move in opposite directions. (For example, the anion transporter of erythrocytes is an antiport.) Proton symport proteins are used by E. coU and other bacteria to accumulate lactose, arabinose, ribose, and a variety of amino acids. E. coli also possesses Na -symport systems for melibiose as well as for glutamate and other amino acids. [Pg.311]

In mimicking this type of function, noncyclic artificial carboxylic ionophores having two terminal groups of hydroxyl and carboxylic acid moieties were synthesized and the selective transport of alkali metal cations were examined by Yamazaki et al. 9 10). Noncyclic polyethers take on a pseudo-cyclic structure when coordinating cations and so it is possible to achieve the desired selectivity for specific cations by adjusting the length of the polyether chain 2). However, they were not able to observe any relationship between the selectivity and the structure of the host molecules in an active transport system using ionophores 1-3 10). (Table 1)... [Pg.39]

By considering the stability constant and the lipophilicity of host molecules, Fyles et al. synthesized a series of carboxylic ionophores having a crown ether moiety and energetically developed the active transport of alkali metal cations 27-32). Ionophores 19-21 possess appropriate stability constants for K+ and show effective K+-selective transports (Fig. 5). Although all of the corresponding [15]crown-5 derivatives (22-24) selectively transport Na+, their transport rates are rather slow compared with... [Pg.43]

A certain crown ether having additional coordination sites for a trasition metal cation (71) changes the transport property for alkali metal cations when it complexes with the transition metal cation 76) (Fig. 13). The fact that a carrier can be developed which has a reversible complexation property for a transition metal cation strongly suggests that this type of ionophore can be applied to the active transport system. [Pg.57]

In this review, recent development of active transport of ions accross the liquid membranes using the synthetic ionophores such as crown ethers and other acyclic ligands, which selectively complex with cations based on the ion-dipole interaction, was surveyed,... [Pg.58]

Some metals can be converted to a less toxic form through enzyme detoxification. The most well-described example of this mechanism is the mercury resistance system, which occurs in S. aureus,43 Bacillus sp.,44 E. coli,45 Streptomyces lividans,46 and Thiobacillus ferrooxidans 47 The mer operon in these bacteria includes two different metal resistance mechanisms.48 MerA employs an enzyme detoxification approach as it encodes a mercury reductase, which converts the divalent mercury cation into elemental mercury 49 Elemental mercury is more stable and less toxic than the divalent cation. Other genes in the operon encode membrane proteins that are involved in the active transport of elemental mercury out of the cell.50 52... [Pg.411]

Both secondary active transport and positive cooperativity effects enhance carrier-mediated solute flux, in contrast to negative cooperativity and inhibition phenomena, which depress this flux. Most secondary active transport in intestinal epithelia is driven by transmembrane ion gradients in which an inorganic cation is cotransported with the solute (usually a nutrient or inorganic anion). Carriers which translocate more than one solute species in the same direction across the membrane are referred to as cotransporters. Carriers which translocate different solutes in opposite directions across the membrane are called countertransporters or exchangers (Figs. 10 and 11). [Pg.186]

The exit of drugs from the CNS can involve (1) diffusion across the blood-brain barrier in the reverse direction at rates determined by the lipid solubility and degree of ionization of the drug, (2) drainage from the cerebrospinal fluid (CSP) into the dural blood sinuses by flowing through the wide channels of the arachnoid villi, and (2) active transport of certain organic anions and cations from the CSF to blood across the choroid plexuses... [Pg.51]

Inui, K., Saito, H. and Hori, R. (1985). H+ gradient-dependent active transport of tetaethyl-ammonium cation in apical-membrane vesicles isolated from kidney epithelial cell line LLC-PK Biochem. J. 227 199-203. [Pg.683]

Methods of traversing the basolateral membrane include uptake systems for organic cations and anions via fadhtated diffusion and/or active transport [1]. Organic anions and cations cross the basolateral membrane via ATP-driven or secondary active processes (H -antiport) [2]. Basolateral uptake processes include the gamma-glutamyl transport system [3] and those for glycoproteins [4]. Certain proteins (insulin, epidermal growth factor (EGF)) are transcytosed across the tubular cells from the blood to the tubular lumen via receptor-mediated uptake [5]. [Pg.123]

It remains to be established whether other transporter proteins for other drug classes (e. g. cations) are conserved between species. Active transport processes are believed to be involved in the renal and hepatic clearance of the zwitterionic throm-... [Pg.130]

Biliary excretion of certain anions (S25) and cations (N2) may be by an active transport process, and many drugs are excreted into bile against a bile blood concentration gradient exceeding 50 1 (Gll). [Pg.61]

Such complexation-reaction coupling processes may be of particular interest for the study of cation transport since they contain the possibility of devising systems undergoing active transport. [Pg.20]

Impetus was given to work in the field of selective cation complex-ation by the observation of Moore and Pressman (5) in 1964 that the macrocyclic antibiotic valinomycin is capable of actively transporting K+ across mitochondrial membranes. This observation has been confirmed and extended to numerous macrocyclic compounds. There is now an extensive literature on the selective complexation and transport of alkali metal ions by various macrocyclic compounds (e.g., valinomycin, mo-nactin, etc.) (2). From solution spectral (6) and crystal X-ray (7) studies we know that in these complexes the alkali metal cation is situated in the center of the inwardly oriented oxygen donor atoms. Similar results are found from X-ray studies of cyclic polyether complexes of alkali metal ions (8) and barium ion (9). These metal macrocyclic compound systems are especially noteworthy since they involve some of the few cases where alkali metal ions participate in complex ion formation in aqueous solution. [Pg.162]

Matsushima, K., Kobayashi, H., Nakatsuji, Y., Okahara, M., Rroton driven active-transport of alkali-metal cations by using alkyl monoaza crown ether derivatives, Chem. Lett., 701-704, 1983. [Pg.294]

Figure 15. Selectivity of transport rate of alkali metal cations relative to Na by active transporters (C8TrgP)4mTet ( ), (C8TrgP)6Hex(A), (G82P)2Di (o), (A82P)4Tet ( ), (G8Trg)4Tet... Figure 15. Selectivity of transport rate of alkali metal cations relative to Na by active transporters (C8TrgP)4mTet ( ), (C8TrgP)6Hex(A), (G82P)2Di (o), (A82P)4Tet ( ), (G8Trg)4Tet...
According to the second law, the dissipation function must be positive if not zero, which of course is to be expected here, since we are dealing with a spontaneously occurring passive process. The thermodynamic force A/x+, which contains both a concentration-dependent component and an electrical component, is the sole cause of the flow J+. In a system in which more than one process occurs, each process gives rise to a term in the dissipation function consisting of the product of an appropriate force and its conjugate flow. In the case of active transport of the cation, as found, for example, in certain epithelial tissues, the cation flux is coupled to a metabolic reaction. If we represent the flow or velocity of the reaction per unit area of membrane by Jr, the appropriate force driving the reaction is... [Pg.329]

Dye-sensitized solar cells (DSSCs) are photoelectrochemical solar devices, currently subject of intense research in the framework of renewable energies as a low-cost photovoltaic device. DSSCs are based upon the sensitization of mesoporous nanocrystalline metal oxide films to visible light by the adsorption of molecular dyes.5"7 Photoinduced electron injection from the sensitizer dye (D) into the metal oxide conduction band initiates charge separation. Subsequently, the injected electrons are transported through the metal oxide film to a transparent electrode, while a redox-active electrolyte, such as I /I , is employed to reduce the dye cation and transport the resulting positive charge to a counter electrode (Fig. 17.4). [Pg.527]


See other pages where Cations active transport is mentioned: [Pg.536]    [Pg.403]    [Pg.38]    [Pg.40]    [Pg.41]    [Pg.49]    [Pg.52]    [Pg.55]    [Pg.56]    [Pg.506]    [Pg.506]    [Pg.43]    [Pg.224]    [Pg.1004]    [Pg.254]    [Pg.251]    [Pg.323]    [Pg.78]    [Pg.314]    [Pg.310]    [Pg.153]    [Pg.342]    [Pg.159]    [Pg.64]    [Pg.193]    [Pg.423]    [Pg.327]    [Pg.43]    [Pg.310]    [Pg.487]    [Pg.183]   
See also in sourсe #XX -- [ Pg.422 ]




SEARCH



Activated transport

Active transporter

Cation -activity

Cation transporters

© 2024 chempedia.info