Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Corrosion cathodic processes

Most corrosion inhibitors are of the adsorption type. In general, these are compounds which adsorb on the metal surface and act to suppress anodic and/or cathodic corrosion processes 147 . [Pg.59]

In aerated neutral or alkahne solutions, cathodic corrosion reaction is usually the reduction of oxygen. The cathodic corrosion process is controlled by the availability of oxygen, which is related to oxygen diffusion to the cathodic corrosion site. For structures immersed in flowing water, the limiting current of oxygen varies with the flow velocity of the water. This will lead to underprotection or overprotection. [Pg.608]

Mixed inhibitors are compounds that retard the anodic and cathodic corrosion processes simultaneously by general adsorption covering the entire surface, sometimes with a polymer. [Pg.43]

A process resulting in a decrease in touglmess or ductility of a metal due to absorjDtion of hydrogen. This atomic hydrogen can result, for instance, in the cathodic corrosion reaction or from cathodic protection. [Pg.2732]

Baeckman W v, Schenk W and Prinz W 1997 Handbook of Cathodic Corrosion Protection Theory and Practice of Electrochemical Protection Processes (Flouston, TX Gulf)... [Pg.2738]

Asahi also reports an undivided cell process employing a lead alloy cathode, a nickel—steel anode, and an electrolyte composed of an emulsion of 20 wt % of an oil phase and 80 wt % of an aqueous phase (125). The aqueous phase is 10 wt % K HPO, 3 wt % K B O, and 2 wt % (C2H (C4H )2N)2HP04. The oil phase is about 28 wt % acrylonitrile and 50 wt % adiponitrile. The balance of the oil phase consists of by-products and water. The cell operates at a current density of 20 A/dm at 50°C. Circulated across the cathode surface at a superficial velocity of 1.5 m/s is the electrolyte. A 91% selectivity to adiponitrile is claimed at a current efficiency of 90%. The respective anode and cathode corrosion rates are about mg/(Ah). Asahi s improved EHD process is reported to have been commercialized in 1987. [Pg.101]

Biological Corrosion The metabohc activity of microorganisms can either directly or indirectly cause deterioration of a metal by corrosion processes. Such activity can (1) produce a corrosive environment, (2) create electrolytic-concentration cells on the metal surface, (3) alter the resistance of surface films, (4) have an influence on the rate of anodic or cathodic reaction, and (5) alter the environment composition. [Pg.2420]

Most galvanic corrosion processes are sensitive to the relatively exposed areas of the noble (cathode) and active (anode) metals. The corrosion rate of the active metal is proportional to the area of exposed noble metal divided by the area of exposed active metal. A favorable area ratio (large anode, small cathode) can permit the coupling of dissimilar metals. An unfavorable area ratio (large cathode, small anode) of the same two metals in the same environment can be costly. [Pg.361]

The concept of the corrosion process, derived from the Latin corrodere (to eat away, to destroy), first appeared in the Philosophical Transactions in 1667 [2]. It was discussed in a German translation from the French on the manufacture of white lead in 1785 and was mentioned in 1836 in the translation of an English paper by Davy on the cathodic protection of iron in seawater [3]. However, almost until the present day, the term was used indiscriminately for corrosion reaction, corrosion effects, and corrosion damage. Only in DIN 50900, Part I, were these terms distinguished and defined [4] (see Section 2.1). [Pg.1]

Electrical conductivity is of interest in corrosion processes in cell formation (see Section 2.2.4.2), in stray currents, and in electrochemical protection methods. Conductivity is increased by dissolved salts even though they do not take part in the corrosion process. Similarly, the corrosion rate of carbon steels in brine, which is influenced by oxygen content according to Eq. (2-9), is not affected by the salt concentration [4]. Nevertheless, dissolved salts have a strong indirect influence on many local corrosion processes. For instance, chloride ions that accumulate at local anodes can stimulate dissolution of iron and prevent the formation of a film. Alkali ions are usually regarded as completely harmless, but as counterions to OH ions in cathodic regions, they result in very high pH values and aid formation of films (see Section 2.2.4.2 and Chapter 4). [Pg.34]

Coatings of less noble metals than the substrate metal (e.g., Zn on Fe) are only protective if the corrosion product of the metal coating restricts the corrosion process. At the same time, the formation of aeration cells is hindered by the metal coating. No corrosion occurs at defects. Additional cathodic protection to reduce the corrosion of the metal coating can be advantageous. Favorable polarization properties and low protection current requirements are possible but need to be tested in individual cases. The possibility of damage due to blistering and cathodic corrosion must be heeded. [Pg.176]

Buried steel pipelines for the transport of gases (at pressures >4 bars) and of crude oil, brine and chemical products must be cathodically protected against corrosion according to technical regulations [1-4], The cathodic protection process is also used to improve the operational safety and economics of gas distribution networks and in long-distance steel pipelines for water and heat distribution. Special measures are necessary in the region of insulated connections in pipelines that transport electrolytically conducting media. [Pg.265]

Figure 4-419 illustrates the concept of corrosion process under concentration polarization control. Considering hydrogen evolution at the cathode, reduction rate of hydrogen ions is dependent on the rate of diffusion of hydrogen ions to the metal surface. Concentration polarization therefore is a controlling factor when reducible species are in low concentrations (e.g., dilute acids). [Pg.1265]

For the corrosion process to proceed, the corrosion cell must contain an anode, a cathode, an electrolyte and an electronic conductor. When a properly prepared and conditioned mud is used, it causes preferential oil wetting on the metal. As the metal is completely enveloped and wet by an oil environment that is electrically nonconductive, corrosion does not occur. This is because the electric circuit of the corrosion cell is interrupted by the absence of an electrolyte. Excess calcium hydroxide [Ca(OH)j] is added as it reacts with hydrogen sulfide and carbon dioxide if they are present. The protective layer of oil film on the metal is not readily removed by the oil-wet solids as the fluid circulates through the hole. [Pg.1336]

Fig. 1.28 Evans diagram illustrating a corrosion process (e.g. a bimetallic couple) in which the area of the cathode is not equal to that of the anode, (o) so that and (b) > S(,... Fig. 1.28 Evans diagram illustrating a corrosion process (e.g. a bimetallic couple) in which the area of the cathode is not equal to that of the anode, (o) so that and (b) > S(,...
Dissolved oxygen reduction process Corrosion processes governed by this cathode reaction might be expected to be wholly controlled by concentration polarisation because of the low solubility of oxygen, especially in concentrated salt solution. The effect of temperature increase is complex in that the diffusivity of oxygen molecules increases, but solubility decreases. Data are scarce for these effects but the net mass transport of oxygen should increase with temperature until a maximum is reached (estimated at about 80°C) when the concentration falls as the boiling point is approached. Thus the corrosion rate should attain a maximum at 80°C and then decrease with further increase in temperature. [Pg.322]

This represents a special case of high-level turbulence at a surface by the formation of steam and the possibility of the concentration of ions as water evaporates into the steam bubbles . For those metals and alloys in a particular environment that allow diffusion-controlled corrosion processes, rates will be very high except in the case where dissolved gases such as oxygen are the main cathodic reactant. Under these circumstances gases will be expelled into the steam and are not available for reaction. However, under conditions of sub-cooled forced circulation, when cool solution is continually approaching the hot metal surface, the dissolved oxygen... [Pg.328]

The driving force of a thermogalvanic corrosion cell is therefore the e.m.f. attributable to these four effects, but modified by anodic and cathodic polarisation of the metal electrodes as a result of local action corrosion processes. [Pg.330]

Oxygen from the atmosphere, dissolved in the electrolyte solution provides the cathode reactant in the corrosion process. Since the electrolyte solution is in the form of thin films or droplets, diffusion of oxygen from the atmosphere/electrolyte solution interface to the solution/metal interface is rapid. Moreover, convection currents within these thin films of solution may play a part in further decreasing concentration polarisation of this cathodic process . Oxygen may also oxidise soluble corrosion products to less soluble ones which form more or less protective barriers to further corrosion, e.g. the oxidation of ferrous species to the less soluble ferric forms in the rusting of iron and steel. [Pg.338]

It enables greater cathodic/anodic surface area ratios to become active in corrosion processes, thereby promoting pitting mechanisms in vulnerable materials. [Pg.65]

The metallic substrate, clean and rinsed, is immersed wet in the plating cell. The base metals which are usually plated present an essentially metallic surface to the electrolyte, and the slight corrosive action of the rinse water in preventing the formation of any substantial oxide film is important. A critical balance of corrosion processes in the initial stages is vital to successful electroplating, and for this reason there is a severe restriction on the composition of the electroplating bath which may be used for a particular substrate. This will be discussed later. The substrate is made the cathode of the cell it may be immersed without applied potential ( dead entry) or may be already part of a circuit which is completed as soon as the substrate touches the electrolyte ( live entry). Live entry reduces the tendency for the plating electrolyte to corrode the substrate in the period before the surface... [Pg.339]

The explicit aims of boiler and feed-water treatment are to minimise corrosion, deposit formation, and carryover of boiler water solutes in steam. Corrosion control is sought primarily by adjustment of the pH and dissolved oxygen concentrations. Thus, the cathodic half-cell reactions of the two common corrosion processes are hindered. The pH is brought to a compromise value, usually just above 9 (at 25°C), so that the tendency for metal dissolution is at a practical minimum for both steel and copper alloys. Similarly, by the removal of dissolved oxygen, by a combination of mechanical and chemical means, the scope for the reduction of oxygen to hydroxyl is severely constrained. [Pg.832]

The determination of polarisation curves of metals by means of constant potential devices has contributed greatly to the knowledge of corrosion processes and passivity. In addition to the use of the potentiostat in studying a variety of mechanisms involved in corrosion and passivity, it has been applied to alloy development, since it is an important tool in the accelerated testing of corrosion resistance. Dissolution under controlled potentials can also be a precise method for metallographic etching or in studies of the selective corrosion of various phases. The technique can be used for establishing optimum conditions of anodic and cathodic protection. Two of the more recent papers have touched on limitations in its application and differences between potentiostatic tests and exposure to chemical solutions. ... [Pg.1107]


See other pages where Corrosion cathodic processes is mentioned: [Pg.349]    [Pg.349]    [Pg.248]    [Pg.123]    [Pg.131]    [Pg.133]    [Pg.258]    [Pg.336]    [Pg.349]    [Pg.349]    [Pg.248]    [Pg.123]    [Pg.131]    [Pg.133]    [Pg.258]    [Pg.336]    [Pg.67]    [Pg.282]    [Pg.17]    [Pg.27]    [Pg.69]    [Pg.474]    [Pg.1265]    [Pg.1301]    [Pg.1313]    [Pg.17]    [Pg.90]    [Pg.239]    [Pg.311]    [Pg.343]    [Pg.385]    [Pg.586]    [Pg.1236]    [Pg.373]    [Pg.838]   
See also in sourсe #XX -- [ Pg.131 ]




SEARCH



Cathode corrosion

Cathodes process

Cathodic processes

Corrosion copper, cathodic process

Corrosion electrochemistry cathodic process

Corrosion process cathodic dissolution

© 2024 chempedia.info