Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cathode scale

A third auxiliary effect is the deposition of compounds from the soil on the buried system. This effect is extremely pronounced in seawater, where a cathode scale resembling hard glossy enamel can build up over time and grow as thick as 2 cm. When deposited in seawater, this material is a complex mixture of calcium and magnesium oxides, hydroxides, and carbonates. The composition of this hard deposit depends upon CP current density, among other factors (see Chap. 8 for details on calcareous deposits). [Pg.398]

In fresh or brackish water cathode scale composition is even more variable than the scale formed in seawater since its formation is based on highly variable ion concentrations. This is also true in soils. Some soils will not form a visible scale, although there is enough calcium present in most soils to favor scale formation. Often, when a system has been polarized by CP, no scale will be visible until the system surface dries out. It then appears as a whitish coloration. On a buried system which has not been under CP, cathode scale is frequently found in an irregular mottled pattern this makes the actually active cathodic areas visible to the eye. [Pg.398]

On a large scale, hydrogen peroxide is produced by the electrolysis of ammonium hydrogensulphate, using a platinum anode and a lead cathode separated by a diaphragm. The essential process occurring is ... [Pg.278]

Fluorine cannot be prepared directly by chemical methods. It is prepared in the laboratory and on an industrial scale by electrolysis. Two methods are employed (a) using fused potassium hydrogen-fluoride, KHFj, ill a cell heated electrically to 520-570 K or (b) using fused electrolyte, of composition KF HF = 1 2, in a cell at 340-370 K which can be electrically or steam heated. Moissan, who first isolated fluorine in 1886, used a method very similar to (b) and it is this process which is commonly used in the laboratory and on an industrial scale today. There have been many cell designs but the cell is usually made from steel, or a copper-nickel alloy ( Monel metal). Steel or copper cathodes and specially made amorphous carbon anodes (to minimise attack by fluorine) are used. Hydrogen is formed at the cathode and fluorine at the anode, and the hydrogen fluoride content of the fused electrolyte is maintained by passing in... [Pg.316]

Electrolysis of hydrochloric acid yields hydrogen at the cathode and oxygen at the anode from the dilute acid, but chlorine at the anode (of carbon) from the concentrated acid. Electrolysis of the concentrated acid is used on the large scale to recover chlorine. [Pg.331]

Manufacture and Economics. Nitrogen tritiuoride can be formed from a wide variety of chemical reactions. Only two processes have been technically and economically feasible for large-scale production the electrolysis of molten ammonium acid fluoride and the direct fluorination of the ammonia in the presence of molten ammonium fluoride. In the electrolytic process, NF is produced at the anode and H2 is produced at the cathode. In a divided cell of 4 kA having nickel anodes, extensive dilution of the gas streams with N2 was used to prevent explosive reactions between NF and H2 (17). [Pg.217]

These reactions can be carried out at room temperature. Hydrogen gas can also be produced on a laboratory scale by the electrolysis of an aqueous solution. Production of hydrogen through electrolysis is also used industrially. This involves the following reaction at the cathode of the electrochemical cell ... [Pg.415]

Silver reduces the oxygen evolution potential at the anode, which reduces the rate of corrosion and decreases lead contamination of the cathode. Lead—antimony—silver alloy anodes are used for the production of thin copper foil for use in electronics. Lead—silver (2 wt %), lead—silver (1 wt %)—tin (1 wt %), and lead—antimony (6 wt %)—silver (1—2 wt %) alloys ate used as anodes in cathodic protection of steel pipes and stmctures in fresh, brackish, or seawater. The lead dioxide layer is not only conductive, but also resists decomposition in chloride environments. Silver-free alloys rapidly become passivated and scale badly in seawater. Silver is also added to the positive grids of lead—acid batteries in small amounts (0.005—0.05 wt %) to reduce the rate of corrosion. [Pg.61]

Lead Telluride. Lead teUuride [1314-91 -6] PbTe, forms white cubic crystals, mol wt 334.79, sp gr 8.16, and has a hardness of 3 on the Mohs scale. It is very slightly soluble in water, melts at 917°C, and is prepared by melting lead and tellurium together. Lead teUuride has semiconductive and photoconductive properties. It is used in pyrometry, in heat-sensing instmments such as bolometers and infrared spectroscopes (see Infrared technology AND RAMAN SPECTROSCOPY), and in thermoelectric elements to convert heat directly to electricity (33,34,83). Lead teUuride is also used in catalysts for oxygen reduction in fuel ceUs (qv) (84), as cathodes in primary batteries with lithium anodes (85), in electrical contacts for vacuum switches (86), in lead-ion selective electrodes (87), in tunable lasers (qv) (88), and in thermistors (89). [Pg.69]

Zinc. The electrowinning of zinc on a commercial scale started in 1915. Most newer faciUties are electrolytic plants. The success of the process results from the abiUty to handle complex ores and to produce, after purification of the electrolyte, high purity zinc cathodes at an acceptable cost. Over the years, there have been only minor changes in the chemistry of the process to improve zinc recovery and solution purification. Improvements have been made in the areas of process instmmentation and control, automation, and prevention of water pollution. [Pg.174]

Other Metals. AH the sodium metal produced comes from electrolysis of sodium chloride melts in Downs ceUs. The ceU consists of a cylindrical steel cathode separated from the graphite anode by a perforated steel diaphragm. Lithium is also produced by electrolysis of the chloride in a process similar to that used for sodium. The other alkaH and alkaHne-earth metals can be electrowon from molten chlorides, but thermochemical reduction is preferred commercially. The rare earths can also be electrowon but only the mixture known as mischmetal is prepared in tonnage quantity by electrochemical means. In addition, beryIHum and boron are produced by electrolysis on a commercial scale in the order of a few hundred t/yr. Processes have been developed for electrowinning titanium, tantalum, and niobium from molten salts. These metals, however, are obtained as a powdery deposit which is not easily separated from the electrolyte so that further purification is required. [Pg.175]

The electrorefining of many metals can be carried out using molten salt electrolytes, but these processes are usually expensive and have found Httie commercial use in spite of possible technical advantages. The only appHcation on an industrial scale is the electrorefining of aluminum by the three-layer process. The density of the molten salt electrolyte is adjusted so that a pure molten aluminum cathode floats on the electrolyte, which in turn floats on the impure anode consisting of a molten copper—aluminum alloy. The process is used to manufacture high purity aluminum. [Pg.176]

Only about 10 elements, ie, Cr, Ni, Zn, Sn, In, Ag, Cd, Au, Pb, and Rh, are commercially deposited from aqueous solutions, though alloy deposition such as Cu—Zn (brass), Cu—Sn (bronze), Pb—Sn (solder), Au—Co, Sn—Ni, and Ni—Fe (permalloy) raise this number somewhat. In addition, 10—15 other elements are electrodeposited ia small-scale specialty appHcations. Typically, electrodeposited materials are crystalline, but amorphous metal alloys may also be deposited. One such amorphous alloy is Ni—Cr—P. In some cases, chemical compounds can be electrodeposited at the cathode. For example, black chrome and black molybdenum electrodeposits, both metal oxide particles ia a metallic matrix, are used for decorative purposes and as selective solar thermal absorbers (19). [Pg.528]

Research and development efforts have been directed toward improved ceU designs, theoretical electrochemical studies of magnesium ceUs, and improved cathode conditions. A stacked-type bipolar electrode ceU has been operated on a lab scale (112). Electrochemical studies of the mechanism of magnesium ion reduction have determined that it is a two-electron reversible process that is mass-transfer controUed (113). A review of magnesium production is found ia Reference 114. [Pg.80]

Since tire alkali and alkaline metals have such a high affinity for oxygen, sulphur aird selenium they are potentially useful for the removal of these iron-metallic elements from liquid metals with a lower affinity for these elements. Since the hairdling of these Group I and II elements is hazardous on the industrial scale, their production by molten salt electrolysis during metal rehning is an attractive alternative. Ward and Hoar (1961) obtained almost complete removal of sulphur, selenium and tellurium from liquid copper by the electrolysis of molten BaCla between tire metal which functioned as the cathode, and a graphite anode. [Pg.363]

The processes of cathodic protection can be scientifically explained far more concisely than many other protective systems. Corrosion of metals in aqueous solutions or in the soil is principally an electrolytic process controlled by an electric tension, i.e., the potential of a metal in an electrolytic solution. According to the laws of electrochemistry, the reaction tendency and the rate of reaction will decrease with reducing potential. Although these relationships have been known for more than a century and although cathodic protection has been practiced in isolated cases for a long time, it required an extended period for its technical application on a wider scale. This may have been because cathodic protection used to appear curious and strange, and the electrical engineering requirements hindered its practical application. The practice of cathodic protection is indeed more complex than its theoretical base. [Pg.582]

Pickling—a form of chemical and electrolytic removal of mill scale and corrosion products from the surfaces of metals in an acidic solution. Electrolytic pickling may be anodic or cathodic, depending on the polarization of the metal in the solution. [Pg.49]


See other pages where Cathode scale is mentioned: [Pg.891]    [Pg.674]    [Pg.398]    [Pg.25]    [Pg.891]    [Pg.674]    [Pg.398]    [Pg.25]    [Pg.204]    [Pg.477]    [Pg.313]    [Pg.317]    [Pg.390]    [Pg.520]    [Pg.173]    [Pg.94]    [Pg.311]    [Pg.100]    [Pg.507]    [Pg.151]    [Pg.79]    [Pg.93]    [Pg.97]    [Pg.149]    [Pg.149]    [Pg.775]    [Pg.2429]    [Pg.2431]    [Pg.108]    [Pg.176]    [Pg.383]    [Pg.421]    [Pg.456]    [Pg.47]    [Pg.137]   
See also in sourсe #XX -- [ Pg.398 ]




SEARCH



© 2024 chempedia.info