Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cathode catalyses

The held to which the specific features of CNTs and CNFs could bring the most significant advancements is perhaps that of fuel cell electrocatalysis [125,187]. The main uses of CNTs or CNFs as catalyst support for anode or cathode catalysis in direct methanol fuel cells (DMFCs) or proton-exchange membrane fuel cells (PEMFCs) are covered in Chapter 12. In this section we summarize the main advantages linked to the use of nanotubes or nauofibers for these applications. [Pg.354]

Indirect cathodic reduction of sulphones. Redox catalysis.1014... [Pg.1001]

Solid oxide fuel cell, SOFC anodes, 97 catalysis in, 98,410 cathodes, 96... [Pg.573]

This presentation reports some studies on the materials and catalysis for solid oxide fuel cell (SOFC) in the author s laboratory and tries to offer some thoughts on related problems. The basic materials of SOFC are cathode, electrolyte, and anode materials, which are composed to form the membrane-electrode assembly, which then forms the unit cell for test. The cathode material is most important in the sense that most polarization is within the cathode layer. The electrolyte membrane should be as thin as possible and also posses as high an oxygen-ion conductivity as possible. The anode material should be able to deal with the carbon deposition problem especially when methane is used as the fuel. [Pg.95]

Over the anode, the hydrogen and CO produced via reactions (1) and (2) are then oxidized at the anode by reacting with the oxygen species transported from the cathode. The catalysis of the fuel such as methane at the anode and oxygen at the cathode becomes increasingly important with demanding catalytic activity as the SOFC operation temperature decreases, which is the aim under intensive research efforts. [Pg.100]

Binary systems of ruthenium sulfide or selenide nanoparticles (RujcSy, RujcSey) are considered as the state-of-the-art ORR electrocatalysts in the class of non-Chevrel amorphous transition metal chalcogenides. Notably, in contrast to pyrite-type MS2 varieties (typically RUS2) utilized in industrial catalysis as effective cathodes for the molecular oxygen reduction in acid medium, these Ru-based cluster materials exhibit a fairly robust activity even in high methanol content environments of fuel cells. [Pg.314]

The ratio ARH/ARj (monoalkylation/dialkylation) should depend principally on the electrophilic capability of RX. Thus it has been shown that in the case of t-butyl halides (due to the chemical and electrochemical stability of t-butyl free radical) the yield of mono alkylation is often good. Naturally, aryl sulphones may also be employed in the role of RX-type compounds. Indeed, the t-butylation of pyrene can be performed when reduced cathodically in the presence of CgHjSOjBu-t. Other alkylation reactions are also possible with sulphones possessing an ArS02 moiety bound to a tertiary carbon. In contrast, coupling reactions via redox catalysis do not occur in a good yield with primary and secondary sulphones. This is probably due to the disappearance of the mediator anion radical due to proton transfer from the acidic sulphone. [Pg.1019]

Ralph TR, Hogarth MP. 2002a. Catalysis for low temperature fuel cells. Part I The cathode challenges. Platinum Metals Rev 46 3-14. [Pg.562]

BetteUieim A, Parash R, Ozer D. 1982. Catalysis of oxygen cathodic reduction by adsorbed iron(in)-tetra(A,A,A-trimethylanilinium)porphyrin on glassy carbon electrodes. J Electrochem Soc 129 2247. [Pg.687]

A discussion of the applicability of the MPT model to a particular electroless system ideally presumes knowledge of the kinetics and mechanisms of the anodic and cathodic partial reactions, and experimental verification of the interdependence or otherwise of these reactions. However, the study of the kinetics, catalysis, and mechanistic aspects of electroless deposition is an involved subject and is discussed separately. [Pg.230]

Catalysis Issues in SOFC Catalytic processes play in important role in the operation of in particular, the SOFC anode and cathode, and the major challenges for the further development of SOFC towards a commercial project are largely related to improving catalytic activity and robustness. The critical technical issues for SOFC are reliability and lifetime, while economic requirements impose low manufacturing and materials costs. [Pg.328]

Hence, catalysis related challenges for SOFC cathode are the development of cathode specifications, i.e., material and microstructure, having high catalytic activity for oxygen reduction at 600 °C, high electron and ion conductivity, and a low sensitivity for poisoning by volatile Cr species. Again, as for the anode, cost and compatibility related requirements have to be considered. [Pg.331]

Acetylpyridine, cathodic pinacolisation, 40 165 Achiral reactants hydrogenation with, 42 489-498 Acid-base catalysis... [Pg.37]

Fuel cells (continued) metal catalysis, cathodic oxygen reduction, 40 127... [Pg.109]

The Reformatsky reaction can also be performed electrochemically either directly or using a mediator. Ni-catalysis has proven to be an efficient way to prepare j3-hydroxy ester or nitrile from the corresponding a-chlorocompounds (Table 14) [94]. Here again the first step is the oxidative addition of the cathodically generated Ni°bpy to the halocompound. The nature of the sacrificial anode also plays a crucial role in this reaction, though the formation of an organozinc intermediate has not been fully demonstrated. [Pg.161]

The ideal performance of a fuel cell depends on the electrochemical reactions that occur with different fuels and oxygen as summarized in Table 2-1. Low-temperature fuel cells (PEFC, AFC, and PAFC) require noble metal electrocatalysts to achieve practical reaction rates at the anode and cathode, and H2 is the only acceptable fuel. With high-temperature fuel cells (MCFC, ITSOFC, and SOFC), the requirements for catalysis are relaxed, and the number of potential fuels expands. Carbon monoxide "poisons" a noble metal anode catalyst such as platinum (Pt) in low-temperature... [Pg.53]

One further degradation mode related to catalysis is a consequence of operating at low current densities typical of portable power application. Under these conditions, overoxidation of the Pt cathode catalyst occurs, reducing cathode and overall MEA performance. Zelenay has shown that starving the cathode of air flow lowers the cathode potential to low values, causing reduction of Pt oxides and restoring cathode activity. ... [Pg.52]

Although much of the V NMR has been performed on model systems or catalytic materials containing vanadium, 29 >30 compounds such as V2O5 or VOPO4 are used in both the catalysis and lithium battery fields, and many of the results can be used to help elucidate the structures of vanadium-containing cathode materials. V NMR spectra are sensitive to changes in the vanadium coordination number and distortions of the vanadium local environments from regular tetrahedra or octahedra. >33 5>V isotropic chemical shifts of between —400 and —800 ppm are seen for vanadium oxides, and unfortunately, unlike... [Pg.268]


See other pages where Cathode catalyses is mentioned: [Pg.502]    [Pg.575]    [Pg.109]    [Pg.564]    [Pg.444]    [Pg.1019]    [Pg.1021]    [Pg.242]    [Pg.309]    [Pg.310]    [Pg.9]    [Pg.1021]    [Pg.68]    [Pg.423]    [Pg.7]    [Pg.600]    [Pg.605]    [Pg.621]    [Pg.103]    [Pg.115]    [Pg.676]    [Pg.312]    [Pg.480]    [Pg.94]    [Pg.120]    [Pg.228]    [Pg.267]    [Pg.565]   


SEARCH



Cathode catalyses) loadings

Cathode catalyses) stability

Cathode catalyst cells, catalysis

Metal catalysis, cathodic oxygen

Metal catalysis, cathodic oxygen reduction

© 2024 chempedia.info