Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalytic reaction anisole

The polyoxoanion-stabilized Rh(0) nanoclusters were investigated in anisole hydrogenation [6,95]. The catalytic reactions were carried out in a single phase... [Pg.244]

The set of catalysts selected for the dehydration of 2-butanol was also tested for the Friedel-Crafts acylation of anisole [69, 70]. The catalytic test was performed in the liquid phase due to the high boiling points of the reactants and products of this reaction. Anisole was reacted with acetic anhydride at 120 °C in the absence of solvent. In principle, acylation can occur on both the ortho and para positions of anisole. The main product (>99%) over all catalysts in this study was para-methoxyacetophenone, indicating that the reaction predominantly takes place inside the zeolite micropores. The same trend in catalytic activity as in the 2-buta-nol dehydration reaction is observed the conversion of anisole into para-nicihoxy-acetophenone increases upon increasing Ge content of the catalyst (Fig. 9.17) [67]. The main cause of deactivation for this reaction is accumulation of the reaction products inside the micropores of the zeolite. The different behavior of Ge-ZSM-5, compared with ZSM-5, may therefore be due to improved diffusional properties of the former, as the presence of additional meso- and macropores allows for... [Pg.234]

Copper-iron-polyphthalocyanine [251,252] showed a specific catalysis for the oxidations of saturated aldehydes and substituted benzaldehydes with oxygen. The catalytic reaction was solvent dependent so that tetrahydrofuran, ethanol, acetonitrile, ethyl acetate and anisole inhibited benzaldehyde oxidation while oxidation occurred readily in benzene or acetone. Benzaldehyde was catalytically oxidized with copper-iron-polyphthalocyanine and oxygen to give a quantitative yield of a mixture of perbenzoic (61%) and benzoic (39%) acids. Reaction was carried out at 30 °C and atmospheric pressure of oxygen and exhibited no induction period. By contrast p-methyl and p-chlorobenzaldehyde had induction periods of 8 and 15 min respectively while no oxidation of p-substituted benzaldehydes was observed when the para-substituent was NO2, OH, OCH3, or N(CH3)2. [Pg.69]

Aluminum chloride dissolves readily in chlorinated solvents such as chloroform, methylene chloride, and carbon tetrachloride. In polar aprotic solvents, such as acetonitrile, ethyl ether, anisole, nitromethane, and nitrobenzene, it dissolves forming a complex with the solvent. The catalytic activity of aluminum chloride is moderated by these complexes. Anhydrous aluminum chloride reacts vigorously with most protic solvents, such as water and alcohols. The ability to catalyze alkylation reactions is lost by complexing aluminum chloride with these protic solvents. However, small amounts of these "procatalysts" can promote the formation of catalyticaHy active aluminum chloride complexes. [Pg.147]

However, the Buchwald-Hartwig reaction with NHCs as hgands is not limited to palladium. Nickel has also been successfully employed in this catalytic amination. In situ procedures have been described for the coupling of aryl chlorides [163] and tosylates [164] and, more interestingly, anisoles [165]. The use of well-defined Ni(0) catalysts has also been studied [166] (Scheme 6.49). [Pg.183]

This chapter compares the reaction of gas-phase methylation of phenol with methanol in basic and in acid catalysis, with the aim of investigating how the transformations occurring on methanol affect the catalytic performance and the reaction mechanism. It is proposed that with the basic catalyst, Mg/Fe/0, the tme alkylating agent is formaldehyde, obtained by dehydrogenation of methanol. Formaldehyde reacts with phenol to yield salicyl alcohol, which rapidly dehydrogenates to salicyladehyde. The latter was isolated in tests made by feeding directly a formalin/phenol aqueous solution. Salicylaldehyde then transforms to o-cresol, the main product of the basic-catalyzed methylation of phenol, likely by means of an intramolecular H-transfer with formaldehyde. With an acid catalyst, H-mordenite, the main products were anisole and cresols moreover, methanol was transformed to alkylaromatics. [Pg.399]

The catalytic activity of Mg/Al/O sample in m-cresol gas-phase methylation is summarized in Figure 1, where the conversion of m-cresol, and the selectivity to the products are reported as a function of the reaction temperature. Products were 3-methylanisole (3-MA, the product of O-methylation), 2,3-dimethylphenol and 2,5-dimethylphenol (2,3-DMP and 2,5-DMP, the products of ortho-C-methylation), 3,4-dimethylphenol (3,4-DMP, the product of para-C-methylation), and poly-C-methylated compounds. Other by-products which formed in minor amounts were dimethylanisoles, toluene, benzene and anisole (not reported in the Figure). [Pg.349]

Friedel-Crafts acylation is widely used for the production of aromatic ketones applied as intermediates in both fine chemicals and pharmaceutical industries. The reaction is carried out by using conventional homogenous catalysts, which represents significant technical and environmental problems. The present work reports the results obtained in the Friedel-Crafts acylation of aromatic substrates (anisole and 2-methoxynaphthalene) catalyzed by Beta zeolite obtained by crystallization of silanized seeds. This material exhibits hierarchical porosity and enhanced textural properties. For the anisole acylation, the catalytic activity over the conventional Beta zeolite is slightly higher than with the modified Beta material, probably due to the relatively small size of this substrate and the weaker acidity of the last sample. However, the opposite occurred in the acylation of a bulky substrate (2-methoxynaphthalene), with the modified Beta showing a higher conversion. This result is interpreted due to the presence of a hierarchical porosity in this material, which favors the accessibility to the active sites. [Pg.337]

Treatment of a pentacyclic la, I I -(2-oxethano) thioketal steroid with excess Et3SiH/TFA causes reduction of the carbon-carbon double bonds as well as the 17-carbonyl group to give a single reaction product (Eq. 213).368 Other work utilizes trifluoroacetic acid, triethylsilane, and anisole in the presence of a catalytic amount of boron trifluoride etherate to reduce the acetyl carbonyl of a 3-acetyl-2-azetidinone derivative with a dr of 8 1 (Eq. 214).395... [Pg.77]

Aryloxymethyl chlorides may be prepared by the reaction of sodium aryloxymethanesulfonates with phosphorus pentachloride. The chlorination of anisole does not, as previously reported, give phenoxymethyl chloride, but rather a mixture of p- and o-chloroanisoles. Similarly, anisole and other unsubstituted methyl aryl ethers undergo ring chlorination with phosphorus pentachloride and chlorine, whereas ring-chlorinated anisoles, such as />-chloroanisole, undergo chlorination at the methyl group with chlorine at 190-195° in the presence of a catalytic amount of phosphorus pentachloride. ... [Pg.91]

For the synthesis of carazostatin (247), the required arylamine 708 was synthesized starting from 1-methoxycyclohexa-l, 3-diene (710) and methyl 2-decynoate (711). The key step in this route is the Diels-Alder cycloaddition of 710 and 711, followed by retro-Diels-Alder reaction with extrusion of ethylene to give 2-heptyl-6-methoxybenzoate (712). Using a three-step sequence, the methoxy-carbonyl group of compound 712 was transformed to the methyl group present in the natural product. 3-Heptyl-3-methylanisole (713) was obtained in 85% overall yield. Finally, the anisole 713 was transformed to the arylamine 708 by nitration and subsequent catalytic hydrogenation. This simple sequence provides the arylamine 708 in six steps and with 26% overall yield (597,598) (Scheme 5.66). [Pg.233]

There is, as is well known, a close similarity between the crystalline and porous structures of silicalite-1 and silicalite-2. The same similarity therefore exists between TS-1 and TS-2, and it appears logical that they should have very similar catalytic properties. TS-2 has been evaluated as a catalyst for many different reactions, such as Beckmann rearrangement of cyclohexanone oxime with vapor-phase reactants H202 oxidation of phenol, anisole, benzene, toluene, n-hexane, and cyclohexane and ammoximation of cyclohexanone. As described in detail in Section V.C.3, differences that had been claimed between the catalytic properties of TS-1 and those of TS-2 have not been substantiated. Later investigations have shown that, when all the relevant parameters are identical, the catalytic activities of TS-1 and TS-2 are also identical. The small differences in the crystalline structure between the two materials have no influence on their catalytic properties (Tuel et al., 1993a). [Pg.283]

The oxidative carbonylation of arenes to aromatic acids is a useful reaction which can be performed in the presence of Wacker-type palladium catalysts (equation 176). The stoichiometric reaction of Pd(OAc)2 with various aromatic compounds such as benzene, toluene or anisole at 100 °C in the presence of CO gives aromatic acids in low to fair yields.446 This reaction is thought to proceed via CO insertion between a palladium-carbon (arene) allyl chloride, but substantial amounts of phenol and coupling by-products are formed.447... [Pg.369]

Organosulfur compounds are especially useful for C-fluorine bond forming reactions with (difluoroiodo)arenes. For example, dithioketal derivatives of benzophenones are readily converted to diaryldifluoromethanes with two equivalents of DFIT in dichloromethane [105]. This transformation has also been effected with electro chemically prepared p-(difluoroiodo)anisole/Et3N 3HF, and by anodic oxidations of p-iodoanisole in acetonitrile solutions containing Et3N 3HF and dithioketal substrates (Scheme 35) [96]. Under the latter conditions, p-(difluoroiodo)anisole is continuously regenerated, and the iodoarene was employed at catalytic levels for high yield conversions of the dithioketals to diaryldifluoromethanes. [Pg.152]

Readion of anisole (1) with acetic anhydride was chosen as a model, and ytterbium trifluoromethanesulfonate (ytterbium triflate, Yb(OTf)3) was the first RE(OTf)3 representative used. Several reaction conditions were examined the results are summarized in Table 1. When acetic anhydride, acetonitrile, or nitromethane was used as a solvent (entries 4—10), the reaction mixture became homogeneous and the acylation reaction proceeded smoothly. Nitromethane gave the highest yield of4-methoxyaceto-phenone (2) (entries 7-10). On the other hand, in carbon disulfide, dichloroethane, or nitrobenzene (entries 1-3), the reaction mixture was heterogeneous and the yield of 2 was low. It was noted that the acylation proceeded quantitatively when a catalytic amount of Yb(OTf)3 was used (0.2equiv., entry 9). Even when 0.05 equiv. of the catalyst was employed, 2 was obtained in 79 % yield (entry 10). [Pg.142]


See other pages where Catalytic reaction anisole is mentioned: [Pg.270]    [Pg.17]    [Pg.196]    [Pg.366]    [Pg.251]    [Pg.331]    [Pg.75]    [Pg.109]    [Pg.69]    [Pg.157]    [Pg.274]    [Pg.42]    [Pg.158]    [Pg.92]    [Pg.338]    [Pg.60]    [Pg.239]    [Pg.245]    [Pg.372]    [Pg.84]    [Pg.109]    [Pg.485]    [Pg.251]    [Pg.109]    [Pg.1118]    [Pg.134]    [Pg.95]    [Pg.249]    [Pg.75]    [Pg.251]    [Pg.146]    [Pg.185]    [Pg.564]    [Pg.145]    [Pg.18]    [Pg.10]   
See also in sourсe #XX -- [ Pg.233 ]




SEARCH



Anisol

Anisole

© 2024 chempedia.info