Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalytic methanol carbonylation homogeneous

Acetic Acid. Manufacture of acetic acid [64-19-7] by homogeneous catalytic methanol carbonylation has become the leading commercial route to acetic acid (eq. 8) (34,35). [Pg.51]

An alternative strategy for catalyst immobilisation uses ion-pair interactions between ionic catalyst complexes and polymeric ion exchange resins. Since all the rhodium complexes in the catalytic methanol carbonylation cycle are anionic, this is an attractive candidate for ionic attachment. In 1981, Drago et al. described the effective immobilisation of the rhodium catalyst on polymeric supports based on methylated polyvinylpyridines [48]. The activity was reported to be equal to the homogeneous system at 120 °C with minimal leaching of the supported catalyst. The ionically bound complex [Rh(CO)2l2] was identified by infrared spectroscopic analysis of the impregnated resin. [Pg.201]

A mechanistic study by Haynes et al. demonstrated that the same basic reaction cycle operates for rhodium-catalysed methanol carbonylation in both homogeneous and supported systems [59]. The catalytically active complex [Rh(CO)2l2] was supported on an ion exchange resin based on poly(4-vinylpyridine-co-styrene-co-divinylbenzene) in which the pendant pyridyl groups had been quaternised by reaction with Mel. Heterogenisation of the Rh(I) complex was achieved by reaction of the quaternised polymer with the dimer, [Rh(CO)2l]2 (Scheme 11). Infrared spectroscopy revealed i (CO) bands for the supported [Rh(CO)2l2] anions at frequencies very similar to those observed in solution spectra. The structure of the supported complex was confirmed by EXAFS measurements, which revealed a square planar geometry comparable to that found in solution and the solid state. The first X-ray crystal structures of salts of [Rh(CO)2l2]" were also reported in this study. [Pg.202]

Abstract The principle of catalytic SILP materials involves surface modification of a porous solid material by an ionic liquid coating. Ionic liquids are salts with melting points below 100 °C, generally characterized by extremely low volatilities. In the examples described in this paper, the ionic liquid coating contains a homogeneously dissolved Rh-complex and constitutes a uniform, thin film, which itself displays the catalytic reactivity in the system. Continuous fixed-bed reactor technology has been applied successfully to demonstrate the feasibility of catalytic SILP materials for propene hydroformylation and methanol carbonylation. [Pg.149]

All the forward reactions are important steps in commercial homogeneous catalytic processes. Reaction 2.2 is a step in methanol carbonylation (see Chapter 4), while reaction 2.3 is a step in the hydrogenation of an alkene with an acetamido functional group. This reaction, as we will see in Chapter 9, is... [Pg.20]

Carbonylation of organic substrates was investigated using these well defined complexes. These carbonyl compounds exhibited catalytic properties in the carbonylation of organic substrates. In particular methanol carbonylation to methyl acetate in the gas phase was successfully attempted. Mechanistic and kinetic studies of this reaction over rhodium and iridium zeolites showed the similarities between the homogeneous and the zeolite mediated reactions. Aromatic ni-tro compounds were also converted to aromatic isocyanates using similar catalytic systems. The mechanistic aspect of this reaction will be also examined. [Pg.455]

Reactions of this type are termed alkyl migration (see Alkyl Migration). These reactions are very important in several catalytic reactions, such as hydroformylation, methanol carbonylation, and homogeneous CO reduction (see Carbonylation Processes by Homogeneous Catalysis). [Pg.2569]

Figure 2. Catalytic breakthrough of rhodium vs. cobalt in homogeneous catalysis the methanol carbonylation. Figure 2. Catalytic breakthrough of rhodium vs. cobalt in homogeneous catalysis the methanol carbonylation.
The homogenously-catalyzed process involved with step c will be the focus of the following discussion. Note here that a Pd catalyst was used instead of one containing Rh or Ir, but the steps of the catalytic process are very similar to those for methanol carbonylation. Scheme 9.19 outlines the catalytic cycle. [Pg.377]

The commercial processes for methanol carbonylation discussed above all employ homogeneous rhodium complex or iridium complex catalysts that require an iodide cocatalyst. The highly corrosive nature of acidic iodide-containing solutions and the costly product separation steps mean that catalytic process that avoid these problems are potentially attractive,... [Pg.35]

The metal complexes most often studied as polymer-bound catalysts have been Rh(I) complexes, such as analogues of Wilkinson s complex. The catalytic activity of a bound metal complex is nearly the same as that of the soluble analogue. Rhodium complexes are active for alkene hydrogenation, alkene hydroformylation, and, in the presence of CH3I cocatalyst, methanol carbonylation, etc. Polymer supports thus allow the chemistry of homogeneous catalysis to take place with the benefits of an insoluble, easily separated catalyst . ... [Pg.79]

Carbonylation and decarbonylation reactions of alkyl complexes in catalytic cycles have been reviewed . A full account of the carbonylation and homologation of formic and other carboxylic acid esters catalysed by Ru/CO/I systems at 200 C and 150-200 atm CO/H2 has appeared. In a novel reaction, cyclobutanones are converted to disiloxycyclopentenes with hydrosilane and CO in the presence of cobalt carbonyl (reaction 4) . The oxidative addition of Mel to [Rh(CO)2l2] in aprotic solvents (MeOH, CHCI3, THF, MeOAc), the rate determining step in carbonylation of methyl acetate and methyl halides, is promoted by iodides, such as Bu jN+I", and bases (eg 1-methylimidazole) . A further kinetic study of rhodium catalysed methanol carbonylation has appeared . The carbonylation of methanol by catalysts prepared by deposition of Rh complexes on silica alumina or zeolites is comparable with the homogeneous analogue . [Pg.383]

Acetic Acid and Anhydride. Synthesis of acetic acid by carbonylation of methanol is another important homogeneous catalytic reaction. The Monsanto acetic acid process developed in the late 1960s is the best known variant of the process. [Pg.166]

Industry uses a multitude of homogenous catalysts in all kinds of reactions to produce chemicals. The catalytic carbonylation of methanol to acetic acid... [Pg.6]

Oligomerization and polymerization of terminal alkynes may provide materials with interesting conductivity and (nonlinear) optical properties. Phenylacetylene and 4-ethynyltoluene were polymerized in water/methanol homogeneous solutions and in water/chloroform biphasic systems using [RhCl(CO)(TPPTS)2] and [IrCl(CO)(TPPTS)2] as catalysts [37], The complexes themselves were rather inefficient, however, the catalytic activity could be substantially increased by addition of MesNO in order to remove the carbonyl ligand from the coordination sphere of the metals. The polymers obtained had an average molecular mass of = 3150-16300. The rhodium catalyst worked at room temperature providing polymers with cis-transoid structure, while [IrCl(CO)(TPPTS)2] required 80 °C and led to the formation of frani -polymers. [Pg.202]

Methanol is currently the largest volume carbonylation product and is made by passing syngas (CO -f H2 Section 4.1.2) over a solid Cu-Zn oxide catalyst. Most of the other carbonylation reactions are catalyzed by the later c -block transition metals, often under homogeneous conditions in solution. This is despite a public perception that the use of heavy metals (such as the complexes of the 4d and 5d transition metals) is generally undesirable. However their extremely effective catalytic properties now make their use mandatory in many... [Pg.114]


See other pages where Catalytic methanol carbonylation homogeneous is mentioned: [Pg.146]    [Pg.201]    [Pg.157]    [Pg.99]    [Pg.194]    [Pg.39]    [Pg.166]    [Pg.1343]    [Pg.21]    [Pg.628]    [Pg.563]    [Pg.746]    [Pg.1801]    [Pg.2112]    [Pg.237]    [Pg.113]    [Pg.155]    [Pg.39]    [Pg.221]    [Pg.113]    [Pg.195]    [Pg.119]    [Pg.407]    [Pg.317]    [Pg.5]    [Pg.654]    [Pg.676]    [Pg.603]    [Pg.603]    [Pg.88]    [Pg.88]    [Pg.38]   
See also in sourсe #XX -- [ Pg.20 , Pg.39 ]




SEARCH



Catalytic carbonylation

Methanol carbonylations

Methanol homogeneous catalytic

Methanol, catalytic carbonylation

© 2024 chempedia.info